М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
SaintRomik
SaintRomik
05.06.2021 01:01 •  Алгебра

Упростите выражение sin 5a • cos a - sin a• cos5a.

👇
Ответ:
Qkoddk
Qkoddk
05.06.2021

sin(4α)

Объяснение:

1. Упростить выражение, используя формулу тригонометрических функций разницы углов:

sin (α – β) = sin α cos β – cos α sin β

получится:

sin(5α-α)

2. Приведём подобные члены, получится:

sin(4α)

ответ: sin(4α)

4,5(91 оценок)
Открыть все ответы
Ответ:
Tytiki
Tytiki
05.06.2021
Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3

наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором
10- наименьшее двузначное число
10:4=2(ост 2)
11:4=2(ост 3)
11 - первый член прогрессии
(либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство
так как при делении на 4 остаток 3 общая форма 4k+3
4k+3>=10
4k>=10-3
4k>=7
4k>=7:4
k>=1.275
наименьшее натуральное k=2
при k=2: 4k+3=4*2+3=11
11 -первый член
)

далее
разность прогрессии равна числу на которое делим т.е. в данном случае 4

далее ищем последний член прогрессии
99- наибольшее двузначное
99:4=24(ост3)
значит 99 - последний член прогрессии
(либо с оценки неравенством
4l+3<=99
4l<=99-3
4l<=96
l<=96:4
l<=24
24 - Наибольшее натуральное удовлетворяющее неравенство
при l=24 : 4l+3=4*24+3=99
99- последний член прогрессии
)
далее определяем по формуле количество членов
n=\frac{a_n-a_1}{d}+1
n=\frac{99-11}{4}+1=23
и находим сумму по формуле
S_n=\frac{a_1+a_{23}}{2}*n
S_{23}=\frac{11+99}{2}*23=1265
ответ: 1265
4,6(11 оценок)
Ответ:
veno1
veno1
05.06.2021

III. Формулювання мети і завдань уроку

Формулюємо проблему: як знайти значення виразу

.

де х1 і х2 – корені даного квадратного рівняння (не розв'язуючи рівняння)? Пошук відповіді на це запитання і вивчення сфери застосу­вання теореми Вієта та теореми, оберненої до неї (вдосконалення вмінь), — основна мета уроку.

 

IV. Актуалізація опорних знань та вмінь

Виконання усних вправ

1.     Замініть рівняння рівносильним йому зведеним квадратним рівняння:

а) 3х2 – 6х – 9 = 0; б) 2у2 + у – 7 = 0; в) х2 – 3х + 1,5 = 0

та знайдіть суму і добуток його коренів.

2.     Наведіть приклад квадратного рівняння, в якого:

а) один корінь дорівнює нулю, а другий — не дорівнює нулю;

б) обидва корені дорівнюють нулю;

в) немає дійсних коренів;

г) корені — протилежні ірраціональні числа.

3.     Один із коренів квадратного рівняння х2 + 4х – 21 = 0 дорівнює

4,6(87 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ