Итак, если уравнение вида 1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х: х(ах+в) =0. Произведение равно равно нулю, если хотя бы один из множителей равен нулю. Получаем: х=0 или ах+в=0 х=0 или х=-в/а - искомые решения. 2) ах^+с=0, т. е. в=0, то имеем два случая: а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0. б) а и с - разных знаков: используем формулу разность квадратов Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е. Откуда, х=-√с/√а или х=√с/√а - искомые решения.
Берем линейку и карандаш, строим рисунок, чтоы было наглядно.1. найдем длину диагонали прямоугольника. она вычисляется по теореме пифагора и равна корню квадратному из суммы квадратов сторон прямоугольника.Корень из 8 в квадрате + 6 в квадрате = корень из 100 = 10.Длина диагонали равна 10.2. В прямоугольнике диагонали, пересекаясь, делятся пополам. Таким образом, половина диагонали будет равна 10/2=5.3. Ищем расстояние от точки К до вершин прямоугольника по теореме пифагора, т.к. это расстояние является гипотенузой прямоугольных треугольников, где один катет = 12, второй катет равен 5. Таким образом искомое расстояние будет равно корень квадратный из суммы квадратов 12 и 5. Корень квадратный из суммы 144+25 = корень из 169 = 13. ответ: Расстояние от точки К до вершин прямоугольника равно 13 см.
1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х:
х(ах+в) =0.
Произведение равно равно нулю, если хотя бы один из множителей равен нулю.
Получаем:
х=0 или ах+в=0
х=0 или х=-в/а - искомые решения.
2) ах^+с=0, т. е. в=0, то имеем два случая:
а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0.
б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
Откуда,
х=-√с/√а или х=√с/√а - искомые решения.