М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kirill0812
Kirill0812
05.04.2020 05:34 •  Алгебра

Решите уравнение х^2-49/х-7=0​

👇
Ответ:
Megorka
Megorka
05.04.2020

\frac{ {x}^{2} - {7}^{2} }{x - 7} = 0 \\ \frac{(x - 7)(x + 7)}{x - 7} = 0 \\ x + 7 = 0 \\ x = - 7

4,5(51 оценок)
Открыть все ответы
Ответ:
talipovskiyt
talipovskiyt
05.04.2020
Решать надо через производную:
f'' (x) = 3x^2+6x = 0
3x(x+2)=0
x=0, x= -2
Рисуешь координатную прямую, на ней отмечаешь эти две точки. Они делят прямую на 3 промежутка: на первом промежутке(-бесконечность; -2] ставь плюс на втором минус, на третьем тоже плюс. Таким образом, а) функция убывает на промежутке от (-бесконечность; -2], возрастает от [-2; +бесконечность)...б) -2 точка минимума, 0 не является точкой экстремума, т.к. там не происходит смена знака...в) чтобы найти наибольшее и наименьшее значение, ты должен подставить -4, -2, 0 и 1 в начальную функцию и посчитать.
4,5(35 оценок)
Ответ:
Соня12811
Соня12811
05.04.2020
№1
Применяем ограниченность синуса и косинуса
-1≤cosx≤1
Преобразуем правую часть по формуле
cos^2 \alpha = \frac{1+cos2 \alpha }{2}

\frac{1+8cos^2x}{4}= \frac{1+ 8\cdot \frac{1+cos2x}{2} }{4}= \frac{1+ 4\cdot (1+cos2x)}{4}= \frac{5+ 4\cdot cos2x}{4}

-1 \leq cos2x \leq 1 \\ \\ -4 \leq 4\cdot cos2x \leq 4 \\ \\ -4+5 \leq 5+4\cdot cos2x \leq 4+5 \\ \\1 \leq 5+4\cdot cos2x \leq 9 \\ \frac{1}{4} \leq \frac{5+ 4\cdot cos2x}{4} \leq \frac{9}{4}
ответ Множество значений
[ \frac{1}{4};2 \frac{1}{4}]

Применяем ограниченность синуса и косинуса
-1≤sinx≤1
Преобразуем правую часть по формуле
sin \alpha cos \alpha = \frac{sin2 \alpha }{2}

sin2xcos2x+2= \frac{sin4x}{2}+2 \\ \\ -1 \leq sin4x \leq 1 \\ \\ -\frac{1}{2} \leq \frac{sin4x}{2} \leq \frac{1}{2} \\ \\ -\frac{1}{2} +2\leq \frac{sin4x}{2}+2 \leq \frac{1}{2} +2\\ \\ 1 \frac{1}{2} \leq \frac{sin4x}{2}+2 \leq 2\frac{1}{2}

ответ Множество значений
[1 \frac{1}{2};2 \frac{1}{2}]

 №2 Найти область определения функции
у=1/(sinx-sin3x)
Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0
Найдем при каких х знаменатель равен 0. Решаем уравнение
sinx-sin3x=0
Применяем формулу
sin \alpha -sin \beta =2sin \frac{ \alpha - \beta }{2}\cdot cos \frac{ \alpha + \beta }{2}

2sin \frac{ x- 3x }{2}\cdot cos \frac{ x + 3x }{2}=0 \\ \\ 2sin(-x)\cdot cos 2x=0 \\ \\ \left[\begin{array}{ccc}sin(-x)=0\\cos2x=0\end{array}\right
Так как синус - нечетная функция, то
sin(-x)=-sinx 

sinx=0  ⇒    x=πk,  k∈Z
cos2x=0  ⇒    2x=(π/2)+πn,  n∈Z  ⇒    x=(π/4)+(π/2)n, n∈ Z
ответ. Область определения: x≠πk,  k∈Z
                                               x≠(π/4)+(π/2)n, n∈ Z
 
4,6(12 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ