1) х = 0 2) (x+1)(x-1)=0 х^2 - 1 = 0 х^2 = 1 х = +1 и - 1 3) х = 1\2 4) х = 0 и х=1,4 5) решений нет дискриминант отрицательный 6) Х=17 х= -1 8) решений нет Разложение 1) x²+x-6 = (х+3)(х-2) 2) 2x² - x - 3.= (х-1.5)(х+1) Задача пусть скорость первого х тогда скорость второго х+3
тогда первый проезжает весь путь(36 км) за 36/х(ч), а второй за 36/(х+3)(ч)
составим уравнение
36/х-36/х+3=1
36/х-36/х+3-1=0
36(х+3)-36х-х(х+3)/х(х+3)=0
36(х+3)-36х-х(х+3)=0
36х+36*3-36х-Х^2-3х=0
-х^2-3х+108=0|:-1
х^2+3х-108=0
D=9+432=441
корень из D=21
х1=-3-21/2=-12(не удовлетворяет условию задачи)
х2=-3+21/2=9(подходит)
Х+3=9+3=12
ответ:9км/ч скорость первого, 12 км/ч скорость второго.
log₂ sin(x/2) < - 1
ОДЗ: sinx/2 > 0
2πn < x/2 < π + 2πn, n ∈ Z
4πn < x < 2π + 4πn, n ∈ Z
sin(x/2) < 2⁻¹
sin(x/2) < 1/2
- π - arcsin(1/2) + 2πn < x/2 < arcsin(1/2) + 2πn, n ∈ Z
- π - π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/6 + 2πn < x/2 < π/6 + 2πn, n ∈ Z
- 7π/3 + 4πn < x < π/3 + 4πn, n ∈ Z
2) log₁/₂ cos2x > 1
ОДЗ:
cos2x > 0
- arccos0 + 2πn < 2x < arccos0 + 2πn, n ∈ Z
- π/2 + 2πn < 2x < π/2 + 2πn, n ∈ Z
- π + 4πn < x < π + 4πn, n ∈ Z
так как 0 < 1/2 < 1, то
cos2x < 1/2
arccos(1/2) + 2πn < 2x < 2π - arccos(1/2) + 2πn, n ∈ Z
π/3 + 2πn < 2x < 2π - π/3 + 2πn, n ∈ Z
π/6 + πn < x < 5π/6 + πn, n ∈ Z