Представим через переменные х и у и систему, тогда
х-у=24,
ху=481(система).
из 1 уравнения можно выразить x, и полученное выражения подставить во второе уравнение системы
x=24+y,
(24+y)*y=481. (система)
в полученном втором уравнении раскрываем скобки, переносим числа все в лево, приравниваем к нулю и решаем через дискриминат:
y^2+24y-481=0
D=576+4*1*(-481)=2500 (√2500=50)
y1=(-24+50)/2=13
y2=(-24-50)/2=-74 посторонний корень, т.к. не натуральное чило)
И полученные значения y подставляем в уравнения
x-y=24
x=24+13
x=37
проверяем значения, подставив их во второе уравнение
xy=481
13*37=481 => x=13, y=37
ответ: x=13, y=37
Получилось 11 бревен, из которых:
– три бревна имеют длину 1/7,
– по два бревна имеют длину 1/35, 2/35, 3/35, 4/35.
Объяснение:
Сначала посмотрим, какие распилы совпали (и совпали ли), потом посчитаем длину бревен. Только заметим, что 6 распилов делят бревно на 7 равных частей, а 4 распила – на 5 равных частей.
Если считать от левого края бревна, то:
1) Иван сделал распилы на расстоянии 1/7, 2/7, 3/7, 4/7, 5/7, 6/7 длины бревна;
2) Петр сделал распилы на расстоянии 1/5, 2/5, 3/5, 4/5 длины бревна.
Совпадений нет, то есть Иван и Петр не пилили в одном и том же месте бревна. Всего сделали 10 распилов, поэтому получилось 11 брёвен.
Выпишем места распила, добавив к ним концы бревна, в порядке возрастания: 0, 1/7, 1/5, 2/7, 2/5, 3/7, 4/7, 3/5, 5/7, 4/5, 6/7, 1.
Посчитаем получившиеся размеры бревен (для этого необходимо из каждой следующей точки распила, начиная со второй, вычесть предыдущую): 1/7, 2/35, 3/35, 4/35, 1/35, 1/7, 1/35, 4/35, 3/35, 2/35, 1/7.
Итого получилось 11 бревен, из которых:
– три бревна имеют длину 1/7,
– по два бревна имеют длину 1/35, 2/35, 3/35, 4/35.
((1)/(3))e^x^(3)+C