С правой части у обоих уравнений -1, следовательно их можно приравнять. x^2+3xy-8y^2=x^2-xy-4y^2 перенесём всё влево: x^2+3xy-8y^2-x^2+xy+4y^2=0 x^2 сокращается; остаётся: 3xy+xy-8y^2+4y^2=0 4xy-4y^2=0 4y можно вынести: 4y(x-y)=0 То есть 4y=0, следовательно y=0 И x-y=0, следовательно x=y теперь подставляем эти "ответы в первое или второе уравнение (неважно) Сначала вместо y будем ставить 0: x^2+3x*0-8*0^2=-1 x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число) Теперь вместо y будем подставлять x (x=y) x^2+3x^2-8x^2=-1 -4x^2=-1 x^2=1/4 x1=1/2 и y1=1/2 x2=-1/2 и y2=-1/2 ответ: (1/2;1/2) и (-1/2;-1/2)
a^2+a-30=0
a1+a2=-p=-1
a1*a2=q=-30
a1=5
a2=-6
x^2+4=5
x^2=5-4=1
x1=1
x2=-1
x^2+4=-6
x^2=-6-4=-10-посторонний корень.
2)(x^2-8)=a
a^2+3,5a-2=0
D=3,5^2-4*1*(-2)=12,25+8=20,25=4,5^2
a1=(-3,5+4,5)/2*1=1/2
a2=(-3,5-4,5)/2=(-8)
x^2-8=a1=1/2
x^2=1/2+8=0,5+8=8,5
x1=√8,5
x2=-√8,5
x^2-8=a2=-8
x^2=-8+8=0
x=0
3)(1-x^2)=a
a^2-3,7a+2,1=0
D=(-3,7)^2-4*1*2,1=13,69-8,4=5,69=2,3^2
a1=(-(-3,7)+2,3)/2*1=(3,7+2,3)/2=6/2
a1=3
a2=(-(-3,7)-2,3)/2=(3,7-2,3)/2=1,4/2
a2=0,7
1-x^2=a1=3
-x^2=3-1=2
x^2=-2-нет корней
1-x^2=a2=0,7
-x^2=0,7-1=-0,3
x^2=0,3
x1=√0,3
x2=-√0,3
4) (1+x^2)=a
a^2+0,5a-5=0
D=0,5^2-4*1*(-5)=0,25+20=20,25=4,5^2
a1=(-0,5+4,5)/2*1=4/2
a1=2
a2=(-0,5-4,5)/2=(-5)/2
a2=-2,5
1+x^2=a1=2
x^2=2-1=1
x1=1
x2=-1
1+x^2=a2=-2,5
x^2=-2,5-1=-3,5
x^2=-3,5-посторонний корень