используенахождение на нахождение вершины параболы:
xo= -b/2a, потом поучившееся результат подставим вместо x, то есть находим уо
1)xo= )/2= 2, уо = 2²-4*2+3= -1
2)хо= )/(-2)= -6, уо = )²-12*(-6)+1= 37
3)хо= )/2= 5, уо = 5²-10*5+15= -10
4)хо= )/2= 7/2, уо= (7/2)²-7*7/2+ 32.5= 20,25
task/30168276
Пусть первая бригада участок трассы может заасфальтировать за x дней , вторая - за y дней . За день первая бригада выполняет 1/x часть работы , вторая 1/y часть. Первая бригада 1/6 часть участка трассы заасфальтирует за x*1/6 дней , вторая бригада (1-1/6)=5/6 часть участка трассы заасфальтирует за y*(5/6) дней .Можем составит систему уравнений :
{ 20*1/x +20*1/y =1 ; x/6 +5y/6 =35. ⇔ { 20/x +20/y =1 ; x+5y =210. ⇔
{ 20 / 5(42 -y ) +20/y =1 ; x =5(42 -y ) .⇔{ 4 / (42 -y ) +20/y =1 ; x =5(42 -y ).
4 / (42 -y ) +20/y =1 ⇔ 4y +20(42 -y) =y(42 -y) ⇔ 4y +840 -20y =42y -y²⇔
y²+ 4y +840 -20y -42y = 0 ⇔y²- 58y +840 = 0 ⇔ [ y =28 ; y = 60 .
* * * D =(58/2)² - 840 =29² -840 =841-840 =1 ; y =29 ± 1 * * *
x = 5(42 -28) = 5*14= 70 или x = 5(42 -30) = 5*12= 60 .
ответ : 70 ; 28 или 60 ; 30.
детали в час время число деталей
мастер Х 4 4Х
ученик Х - 5 6 6Х-30
уравнение : колличество изготовленных деталей равно
4Х = 6Х-30
30 = 2Х
15=Х
ответ: мастер изготавливал каждый час 15 деталей.
1) y=x2-4x+3 - ветви направлены вверх
х=)/2*1=4/2=2
у=2*2-4*2+3=4-8+3=-1
(2, -1) - координаты вершины параболы
2)y=-x2-12x+1 - верви направлены вниз
х=)/2*(-1)=12/(-2)=-6
у=-6*(-6)-12*(-6)+1=-36+72+1=37
(-6, 37) - координаты вершины параболы
3)y=x2-10x+15 - верви направлены вверх
х=)/2*1=10/2=5
у=5*5-10*5+15=25-50+15=-10
(5, -10) - координаты вершины параболы
4)y=x2-7x+32.5 - верви направлены вверх
х=)/2*1=7/2=3,5
у=3,5*3,5-7*3,5+32,5=12,25-24,5+32,5=20,25
(3,5 ; 20,25) - координаты вершины параболы