Чтобы узнать, делится ли число на 99, нужно разбить его на двузначные числа справа налево, крайнее левое число может состоять из 1 цифры. Если сумма этих чисел делится на 99, значит само число делится на 99.
Разбиваем число на пары:
6+2*+*4+27
Считаем, что мы имеем на данный момент:
6 + 20 + 4 + 27 = 57, а нам нужна сумма 99:
99 - 57 = 42 - к нашему числу, разбитому на пары, нужно добавить 4 десятка и 2 единицы:
6+22+44+27=99 - делится на 99, значит и исходное число делится на 99. Проверяем:
6224427 : 99 = 62873
Объяснение:
вот
Основная теорема алгебры. Уравнение n-го степеня имеет n корней. Иными словами: каков старший степень - столько и корней (действительные и комплексные)
Решим к примеру уравнение в действительных корнях.
Рассмотрим функцию . Эта функция является возрастающей на всей числовой прямой.
Также рассмотрим правую часть уравнения: функцию . Графиком линейной функции является прямой, проходящей через точки (0;6), (-6;0).
графики пересекаются в одной точке, следовательно, уравнение имеет один действительный корень и 6 комплексно-сопряженные корни.
Возьмем теперь к примеру уравнение
Если D>0, то квадратное уравнение имеет два ДЕЙСТВИТЕЛЬНЫХ корня.
Если D=0, то квадратное уравнение имеет два равные корни.
Если D<0, то квадратное уравнение действительных корня не имеет, но имеет два комплексно сопряженных корня.