Пусть х - скорость легкового автомобиля, тогда скорость грузового - (х-20). Врямя в пути определяется как отношение пройденного пути к скорости. Тогда Время в пути для легкового автомобиля - 30/х, для грузового - 30/(х-20). 15 минут=15/60 часа=1/4 часа. Составим уравнение
(30/х)+(1/4)=30/(х-20)
(30/х)-(30/(х-20))=-1/4
Приведем к общему знаменателю
(30(х-20)-30х)/(х(х-20))=-1/4
-600/(х^2-20x)=-1/4
х^2-20x=-600/(-1/4)
х^2-20x=2400
х^2-20x-2400=0
D=400+4*2400=10000
x1 =(20-100)/2=-40 - не удовлетворяет условию
х2=(20+100)/2=60 (км/ч) - скорость легкового автомобиля.
Тогда 60-20=40 (км/ч) - скорость грузового автомобиля
♡.﹀﹀﹀﹀﹀﹀﹀﹀﹀.♡
Рассмотрите первое уравнение. Вычтите y из обеих частей уравнения.
x−y=2
Чтобы решить два уравнения методом подстановки, сначала решите одно из уравнений для одной из переменных.
x−y=2,3x−2y=9
Выберите один из уравнений и решите его для x, изолируя x в левой части знака равенства.
x−y=2
Прибавьте y к обеим частям уравнения.
x=y+2
Подставьте y+2 вместо x в другом уравнении 3x−2y=9.
3(y+2)−2y=9
Умножьте 3 на y+2.
3y+6−2y=9
Прибавьте 3y к −2y.
y+6=9
Вычтите 6 из обеих частей уравнения.
y=3
Подставьте 3 вместо y в x=y+2. Так как получившееся уравнение содержит только одну переменную, вы можете напрямую найти решение для x.
x=3+2
Прибавьте 2 к 3.
x=5
решение.
x=5,y=3
♡.﹀﹀﹀﹀﹀﹀﹀﹀﹀.♡