Смотрите рисунок. Начнем с того, что раз треугольник остроугольный,то все высоты находятся внутри треугольника,то внутри расположен и сам ортоцентр. Пусть R центр вписанной окружности,тогда он есть пересечение биссектрис. То есть AR и CR биссектрисы углов C и A. Пусть разбитые ими углы равны Альфа и Бетта. А угол B=x. Q-ортоцентр ,то есть AF и CS высоты к сторонам BC и AB.По условию выходит что четырехугольник AQRC вписан в окружность,значит углы: QAR=QCR,как углы опирающиеся на общую дугу QR. Из рисунка видно что: QAR= Бетта -(90-x). CQR=Альфа-(90-2*Бетта). Откуда: Бетта+x=Альфа +2*Бетта x=Aльфа+Бетта. Из того что сумма углов треугольника ABC равна 180 имеем: x+2*Альфа+2*Бетта=180 3x=180 x=60. ответ: x=60
Объяснение:
Подайте в виде произведения выражение.
здесь имеем дело с суммой a³+b³=(a+b)(a²-ab+b²)
и разностью кубов a³-b³ = (a-b)(a²+ab+b²).
***
1) a⁶ - 8= (a²)³ -(2)³ = (a²-2)(a⁴+2a² + 4);
***
2) m¹² +27 = (m⁴)³ + (3)³ = (m⁴+3)(m⁸-3m⁴+9);
***
3) a³-b¹⁵c¹⁸ = (a)³ - (b⁵c⁶)³ = (a-b⁵c⁶)(a²+ab⁵c⁶+b¹⁰c¹²);
***
4) 1-a²¹b⁹ = (1)³ - (a⁷b³)³ = (1-a⁷b³)(1 + a⁷b³ + a¹⁴b⁶);
***
5) 125c³d³+0.008b³ = (5cd)³ + (0.2b)³ = (5cd+0.2b)(25c²d²-bcd+0.04b²);
***
6) 64/729x³ - 27/1000y⁶ = (4/9x)³ - (3/10y²)³ =
= (4/9x- 3/10y²)(16/81x²+2/15xy²+9/100y⁴).