6.Pівняння х²-5х=0 має корені х 1(Снизу) і х 2(Снизу). Не розв'язуючн дане рівняння (не потрібно знаходити корені), знайдіть значення виразу 1 + 1(Дробі). (Знизу дроба) х 2(Знизу) х 1(Знизу)
Мне кажется, что в условии задачи ошибка. Попытаюсь уточнить условие (дайте знать, правильно ли я понял):
Есть 4 карточки с надписями: делится на 7, простое, нечетное и больше 100. На другой стороне карточек написаны числа 2,5,7,12. Для любой карточки число, написанное на ней, не обладает свойством, написанным на ее обороте. Какое число написано на карточке с надписью делится на 7?
Записываем подходящих кандидатов для каждой карточки:
1) делится на 7: 2, 5, 12
2) простое: 12
3) нечетное: 2, 12
4) больше 100: 2, 5, 7, 12
Для 2-й карточки имеется единственный кандидат: 12. Следовательно, для 3-й карточки имеем: 3) нечетное: 2 (исключаем 12, записанное на 2-й карточке). На 1-й карточке остается число 5 (исключаем 2 и 12). На 4-й карточке остается число 7 (исключаем 2, 5 и 12, записанные на других карточках).
ответ: На обратной стороне карточки с надписью "делится на 7" написано число 5.
Довольно интересная задача. Можно решить, так сказать, в лоб, а можно подумать. В лоб - это выражаем отдельно a и b. или подставляем это во второе выражение и получаем обычное квадратное ур-ие. Решаем, получаем b, с a будет аналогично. Но это не интересно. Давайте разложим сумму кубов по ФСУ Смотрим внимательно и видим, или вспоминаем, что вторая скобка это неполный квадрат разницы, но через квадрат суммы также можно выразить. т.е. Давайте перепишем в таком виде Как мы видим, все исходные данные у нас есть, осталось подставить. Согласитесь, куда приятнее, чем решать квадратные ур-ия.
Мне кажется, что в условии задачи ошибка. Попытаюсь уточнить условие (дайте знать, правильно ли я понял):
Есть 4 карточки с надписями: делится на 7, простое, нечетное и больше 100. На другой стороне карточек написаны числа 2,5,7,12. Для любой карточки число, написанное на ней, не обладает свойством, написанным на ее обороте. Какое число написано на карточке с надписью делится на 7?
Записываем подходящих кандидатов для каждой карточки:
1) делится на 7: 2, 5, 12
2) простое: 12
3) нечетное: 2, 12
4) больше 100: 2, 5, 7, 12
Для 2-й карточки имеется единственный кандидат: 12. Следовательно, для 3-й карточки имеем: 3) нечетное: 2 (исключаем 12, записанное на 2-й карточке). На 1-й карточке остается число 5 (исключаем 2 и 12). На 4-й карточке остается число 7 (исключаем 2, 5 и 12, записанные на других карточках).
ответ: На обратной стороне карточки с надписью "делится на 7" написано число 5.