a) x/x-2
имеет смысл, когда знаменатель не равен нулю, т.е.
x - 2 ≠ 0
x ≠ 2
б) b+4 / b² +7
имеет смысл, когда знаменатель не равен нулю, т.е. b²+7 ≠ 0 , а это верно при любых b , потому что b² всегда ≥ 0, а 7 > 0. Значит выражение имеет смысл при любых значениях переменной.
в) y² - 1/y + y/y-3
имеет смысл, когда знаменатели не равны нулю, т.е.
y ≠ 0 и y-3 ≠ 0 => y ≠ 3
г) a+10/a(a-1)-1
имеет смысл, когда знаменатель не равен нулю, т.е.
a(a-1)-1 ≠ 0
a² - a - 1 ≠ 0
D = 1 + 4 = 5
a ≠ (1 ± √5)/2
Приведем подобные члены. Я их сгруппирую для наглядности:
Различия между ними - это степень и сама буква неизвестного значения: "a" и "b".
Далее просто складываем и вычитаем в зависимости от знака подобные члены. Все упрощение, условно, сводится в 3 действия, так как 3 вида значений:
1)
2)
3)
В итоге записываем полученное выражение:
На этом можно остановиться, можно вынести одинаковые значения за общую скобку. Этим значением является буква b, тогда запись выражения примет вид:
Но нужно помнить, что когда мы выносим одинаковые члены за скобку, то от чего мы их отделяем - делим на то самое отделяемое значение. Если расписать действие переноса буквы b за скобку по шагам, то будет более понятно:
Решение без пояснений:
---------------------------------------------------------------------
2.
Тут самое главное правильно раскрыть скобки с учетом знаков перед ними, а далее все как в первом решении. Начинать раскрытие скобок нужно изнутри, то есть от выражения "
Распишу раскрытие скобок по действиям:
1)
2)
3)
В итоге получили выражение под пунктом 3.
Далее, приводя подобные члены получим:
Далее можем также вынести за скобку одинаковые члены, но в этом нет смысла, так как не принесет упрощения.
Решение без пояснений: