М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nikusy2005
nikusy2005
10.11.2020 12:05 •  Алгебра

У мальчика есть кубики трёх цветов. Он строит из этих кубиков башни, ставя каждый следующий кубик на предыдущий. Запрещено использовать более трёх кубиков каждого из цветов. Мальчик заканчивает стоить башню, как только в ней окажется по 3 кубика каких-то двух цветов. Сколько различных башен может построить мальчик?​

👇
Ответ:
serezhenkoui
serezhenkoui
10.11.2020

Наверняка существует и куда более простое и рациональное решение. Но я пока что нашёл такое. Для начала пусть есть 12 кубиков двух цветов - по 6 кубиков каждого цвета (для определённости пускай это будут 6 синих, и 6 красных), и пусть из них выстроена башня. Тогда для каждой такой башни наверх можно положить либо синий, либо красный кубик, и тогда построение башни тут же заканчивается: ведь по условию Коля заканчивает строить башню сразу же, как только в ней оказываются 7 кубиков одного цвета. Посчитаем, сколько таких башен существует. Если бы все кубики были разноцветными, то их было бы 12! Но в башне есть 6 синих кубиков и 6 красных кубиков, так что перестановка любой пары синих кубиков не даёт нам новую башню. 6 синих кубиков мы можем переставить и столько же для красных. Следовательно, общее число башен из 12 кубиков надо разделить ещё на 6!, а потом ещё раз на 6!. Получится 12! / (6! * 6!). И поверх каждой такой башни можно сверху положить либо синий, либо красный кубик - всего 2 комбинации, так что всего башен из 13 кубиков получается 2*12! / (6! * 6!) Теперь пусть есть башня из 6 синих кубиков и 5 красных кубиков. Если мы положим сверху синий кубик, то башня тут же заканчивается. Аналогично, когда есть башня из 5 синих кубиков и 6 красных, то она заканчивается, как только сверху оказывается ещё один красный кубик. Получается таким образом башня из 11 кубиков и ещё кубик сверху - и так 2 раза. Аналогично рассуждая, количество таких башен равно 11! / (6! * 5!), если синих кубиков 6, а красных 5 и столько же - наоборот. Всего: 2*11! / (6! * 5!) Далее, аналогично, для общего количества башен из 6 кубиков одного цвета и 4 кубиков другого всего есть вариантов 2*10! / (6! * 4!) (10! / (6! * 4!) для 6 кубиков синего цвета и 4 красного и столько же для случая наоборот). Для сочетания 6 - 3 (6 кубиков одного цвета и 3 другого) есть 2*9! / (6!*3!) вариантов. Для сочетания 6-2 есть 2*8! / (6! * 2!) вариантов Для сочетания 6-1 есть 2*7! / (6! * 1!) вариантов. И (формально продолжая закономерность), для сочетания 6-0 (все кубики одного цвета есть 2*6! / (6! * 0!) - всего 2 варианта (всего 7 кубиков, и все либо синие, либо красные). Остаётся только всё это сложить. Вынося общий множитель за скобку, получим: (2 / 6!) * (12! / 6! + 11! / 5! + 10! / 4! + 9! / 3! + 8! / 2! + 7! / 1! + 6! / 0!) - таково общее количество всевозможных башен, которые может построить Коля. Считаем: (2 / (1*2*3*4*5*6)) * (12*11*10*9*8*7 + 11*10*9*8*7*6 + 10*9*8*7*6*5 + 9*8*7*6*5*4 + 8*7*6*5*4*3 + 7*6*5*4*3*2 + 6*5*4*3*2*1) = (2 / (1*2*3*4*5*6)) * (7 * (12*11*10*9*8 + 11*10*9*8*6 + 10*9*8*6*5 + 9*8*6*5*4 + 8*6*5*4*3 + 6*5*4*3*2) + 1) Производим сокращения, не вычисляя эти произведения: 2 * (7 * (132 + 66 + 30 + 12 + 4 + 1) + 1) = 2 * (7 * 245 + 1) = 2 * (1715 + 1) = 2 * 1716 = 3432. Итого, 3432 различные башни.

Объяснение:ой:)

4,6(88 оценок)
Открыть все ответы
Ответ:
ArinaKosareva63
ArinaKosareva63
10.11.2020
1) Пусть (а,b,c) - цифры числа, а - сотни, b - десятки, с - единицы и a+b+c делится  на 10. Т.к. 1≤а+b+c≤9+9+9=27, то сумма цифр может быть только 10 или 20.
2) Если с≤2, то число А+8 имеет цифры (а,b,c+8), т.е. сумма цифр просто увеличится на 8, и значит она не делится на 10. Т.е., обязательно с≥3. 
3) Если b≤8, то при сложении А с 8 произойдет перенос единицы только в разряд десятков, т.е. у числа А+8 будут цифры (а,b+1,c+8-10), их сумма а+b+c-1, и это число тоже не делится на 10. Значит, b=9, т.е. число А состоит из цифр (а,9,с). 
4)  Если а+9+с=10, то а=1, с=0, т.е. с<3, что не может быть в силу п. 2). Значит а+9+с=20, т.е. а=11-с.  
5) При с=3, 4, 5, 6, 7, 8, 9 получаем а=8, 7, 6, 5, 4, 3, 2, что дает числа А из множества 893, 794, 695, 596, 497, 398, 299. Числа А+8 равны 901, 802, 703, 604, 505, 406, 307, соответственно. Очевидно, у каждого из них сумма цифр кратна 10. Итак, ответ: любое из чисел 299, 398, 497, 596, 695, 794, 893.
4,8(68 оценок)
Ответ:
Очевидно, что под термином "все допустимые значения переменной" подразумевается, что решение не должно уходить в комплексную плоскость и то, что на ноль делить нельзя, иначе все значения были бы допустимым.
1) построим график функции, очевидно, что не зависимо от значения Х решение будет существовать
Допустимые значения Х (– ∞; + ∞)
2) А вот второй случай гораздо интересней, здесь отрицательным значениям аргумента Х соответствует мнимая часть графика, а положительной – реальная, при этом точка x=0 – выколота.
Допустимые значения Х (0; + ∞)

Найдите все допустимые значения переменной 1)√x^2+9 2)√1/x
Найдите все допустимые значения переменной 1)√x^2+9 2)√1/x
4,4(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ