М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
egor572
egor572
10.11.2022 21:27 •  Алгебра

Картинка 1) Найдите наменьшее значение функции картинка 2) Найдите наибольшее значение функции
картинка 3) постройте крафик


Картинка 1) Найдите наменьшее значение функции картинка 2) Найдите наибольшее значение функции карт
Картинка 1) Найдите наменьшее значение функции картинка 2) Найдите наибольшее значение функции карт
Картинка 1) Найдите наменьшее значение функции картинка 2) Найдите наибольшее значение функции карт

👇
Ответ:
ivanvolkov2001
ivanvolkov2001
10.11.2022

Я не. Н77еачагчешчк77е

4,4(92 оценок)
Открыть все ответы
Ответ:
Deniz1337
Deniz1337
10.11.2022
Рассмотрим сначала числа со старшим разрядом единиц
(в обратном порядке):

9^2 = 81 \ ;       сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа.

4^2 = 16 \ ;       искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного.

3^2 = 9 \ ;       искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного.

0^2 = 0 \ ;       искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.

Теперь переходим к старшему разряду десятков
(в обратном порядке):

99^2 < 10 \ 000 \ ;       сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного.

40^2 = 1600 \ ;       сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного.

30^2 = 900 \ ;       сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 .

10^2 = 100 \ ;       сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 .

Далее переходим к старшему разряду сотен
(в обратном порядке):

999^2 < 1 \ 000 \ 000 \ ;       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

400^2 = 160 \ 000 \ ;       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

300^2 = 90 \ 000 \ ;       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

100^2 = 10 \ 000 \ ;       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

Ну и ещё переходим к старшему разряду тысяч
(в обратном порядке):

9 \ 999^2 < 100 \ 000 \ 000 \ ;       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

4000^2 = 16 \ 000 000 \ ;       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

3000^2 = 9 \ 000 000 \ ;       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

1000^2 = 1 \ 000 000 \ ;       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

А теперь всё обобщим на самый общий случай.

Если бы число записывалось единицей с R нолями, то его квадрат содержал бы уже 2R нолей, при этом в исходном числе было бы (R+1) цифр, а в квадрате числа – (2R+1) цифр.

Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в обратном порядке:

(  99999 : : : R цифр : : : 99999  )   –   это число на единицу меньше, чем число     (  100000 : : : R нулей : : : 00000  )     , в котором (R+1) цифр.

квадрат числа [(  99999 : : : R цифр : : : 99999  )]    –   это число, меньшее, чем число     (  100000 : : : 2R нулей : : : 00000  )     , в котором (2R+1) цифр.

Значит, квадрат числа (  99999 : : : R цифр : : : 99999  ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  400000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  400000 : : : (R–1) нулей : : : 00000  )]  =
=  (  1600000 : : : (2R–2) нулей : : : 00000  )  содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  300000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  300000 : : : (R–1) нулей : : : 00000  )]  =
=  (  900000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

в числе (  100000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  100000 : : : (R–1) нулей : : : 00000  )]  =
=  (  100000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

И так будет для любого R

R = 1   : : :  сумма: 3R = 3 или (3R–1) = 2 .
R = 2   : : :  сумма: 3R = 6 или (3R–1) = 5 .
R = 3   : : :  сумма: 3R = 9 или (3R–1) = 8 .
R = 4   : : :  сумма: 3R = 12 или (3R–1) = 11 .
R = 5   : : :  сумма: 3R = 15 или (3R–1) = 14 .

  . . .

R = 32   : : :  сумма: 3R = 96 или (3R–1) = 95 .
R = 33   : : :  сумма: 3R = 99 или (3R–1) = 98 .
R = 34   : : :  сумма: 3R = 102 или (3R–1) = 101 .
R = 35   : : :  сумма: 3R = 105 или (3R–1) = 104 .

... и т.д и т.п. ...

Как легко видеть, в этой последовательности:

2, 3,  5, 6,  8, 9,  11, 12,  14, 15 .... 95, 96,  98, 99,  101, 102,  104, 105 ....

пропущены определённые числа. Пропущенные числа:

1, 4, 7, 10, 13, 16 .... 94, 97, 100, 103, 106 ....

подчиняются закону (3R+1).

В самом деле, между предыдущим и последующим значениями, кратными трём, всегда содержатся два целые числа, а искомой суммой, помимо 3R, может быть только одно из них: (3R–1) .

Поэтому, значения, подчиняющиеся закону (3R+1) не могут быть искомым результатом. Так, например, число 99 – кратно трём ( 99 = 3*33 ), а значит, число   100 = 3*33+1   никак не могло бы оказаться в расчётах Лены.

О т в е т : у Лены не могли получиться результаты, подчиняющиеся закону (3R+1) , где R – какое угодно целое число.

ну и, конечно, все результаты Лены могут быть только положительными, поскольку это количества, т.е. натуральные величины.

в частности, у неё не могло получиться число 100.
4,4(25 оценок)
Ответ:
Kirill7692
Kirill7692
10.11.2022
Произведение 16 можно составить из разных натруральных чисел
только двумя

I.     16 = 1 \cdot 16 \ ;

II.     16 = 2 \cdot 8 \ ;

Поскольку это должны быть минимальные числа,
то остальные числа могут быть только больше.

I*   В первом случае остальные числа могут быть только больше    16 \ ,    т.е.:    \{ 17, 18, 19, 20, 21 ... \} \ ;

Но произведение даже 17 \cdot 18 = 306 225 \ ;

И произведение любых двух чисел, больших, чем    16    каждое – будет, очевидно, больше чем    16 \cdot 16 = 256 \ ,    т.е. больше    225 \ ,     а значит, при выборе минимальных чисел в виде     1    и     16    – подобрать остальные числа невозможно.

II*   Во втором случае остальные числа могут быть только больше    8 \ ,    т.е.:    \{ 9, 10, 11, 12, 13 ... \} \ ;

Рассмотрим разложение на множители числа     225 = 15^2 = 3^2 5^2 \ ;

225 = 1 \cdot 225 = 3 \cdot 75 = 5 \cdot 45 = 9 \cdot 25 = 15 \cdot 15 \ ;

На подойдут только числа, большие восьми и не равные друг другу,
т.е.    9    и    25 \ .

Таким образом Вася выбрал числа 2, 8, 9    и    25 \ .

В диапазон между     2    и    8     Вася никаких чисел добавить не мог бы, поскольку тогда минимальные числа стали бы другими, и их произведение уже не было бы    16 \ .

Между     8    и    9     никаких натуральных чисел нет.

В диапазон между     9    и    25     Вася тоже никаких чисел добавить не мог бы, поскольку тогда максимальные числа стали бы другими, и их произведение уже не было бы    225 \ .

Сумма всех Васиных чисел:     2 + 8 + 9 + 25 = 44 \ ;

О т в е т : 44 \ .
4,8(42 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ