М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zhenyazhitenko
zhenyazhitenko
02.10.2021 20:21 •  Алгебра

1) які з наведених чисел є коренями рівняння х²+9х = 0?( розв'язок нужен )
а) -3 ; 3
б) 0 ; 3
в) 0 ; -9
г) 0; -4,5
2) Розв'яжіть рівняння х²-5=0
а) 0; 5
б) -√5 ; √5
в)2,5
г) коренів не має
3) Розв'яжіть рівняння 6х²+х-7=0( розв'язок нужен)
а) -1⅙ ; 1
б) 1 ; -2⅓
в) -1 ; 1,6
г) коренів не має​

👇
Ответ:
POZZITIFFON34
POZZITIFFON34
02.10.2021

1) в

2) б

3) а

я говорю здесь 100 проц все правильно

4,5(13 оценок)
Ответ:
nik2004g
nik2004g
02.10.2021

1) В

2) Б

3) А

Объяснение:

1) x² + 9x = 0

x(x+9)=0

x1 = 0, x2 = -9

2) x² - 5 = 0

(x - √5)(x + √5) = 0

x1 = √5, x2 = -√5

3) 6x² + x - 7 = 0

D = b² - 4ac = 1 + 168 = 169 = 13²

x1 = \frac{-b +\sqrt{D} }{2a}, x2 =\frac{-b -\sqrt{D} }{2a}

x1 = \frac{-1 + 13}{12} = 1, x2 = \frac{-1 - 13}{12} = -1⅙

4,6(74 оценок)
Открыть все ответы
Ответ:
Nurbibi12
Nurbibi12
02.10.2021
Решение
Найдите координаты точек, в которых касательные к графику функции 
y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс.
 Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент  k = - 1.
k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² =
= - 4 /(x - 3)²
y` = - 1
- 4 / (x - 3)² = - 1
x² - 6x + 9 = 4
x² - 6x + 5 = 0
x₁ = 1
x₂ = 5
y₁ = - 1
y₂ = 3
Запишем уравнения этих касательных:
1) y = - (x - 1) - 1
2) y = - (x - 5) + 3
Касательные пересекают ось абсцисс, значит, y = 0
Таким образом, если у = 0, то
1) y = - (x - 1) - 1
- (x - 1) - 1 = 0
 x = 0
2) y = - (x - 5) + 3
- (x - 5) + 3 = 0
 x = 8
ответ:     (0; 0) ; (8; 0)

2)  y = √x     y₀ = 2
y = y(x₀) + y`(x₀)*(x - x₀)  - уравнение касательной
если у₀ = 2, то
2 = √x
x₀ = 4 абсцисса точки
а) y(x₀) = y(4) = √4 = 2
б) y` = 1/2√x
y` = 1/2√4 = 1/(2*2) = 1/4
в)  y = 2 + (1/4)*(x - 4)
y = 2 + (1/4)*x - (1/4)*4
y = 2 + (1/4)*x - 1
y = (1/4)*x + 1 - уравнение касательной в точке
4,5(98 оценок)
Ответ:
Дияс465
Дияс465
02.10.2021
Решение
Найдите координаты точек, в которых касательные к графику функции 
y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс.
 Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент  k = - 1.
k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² =
= - 4 /(x - 3)²
y` = - 1
- 4 / (x - 3)² = - 1
x² - 6x + 9 = 4
x² - 6x + 5 = 0
x₁ = 1
x₂ = 5
y₁ = - 1
y₂ = 3
Запишем уравнения этих касательных:
1) y = - (x - 1) - 1
2) y = - (x - 5) + 3
Касательные пересекают ось абсцисс, значит, y = 0
Таким образом, если у = 0, то
1) y = - (x - 1) - 1
- (x - 1) - 1 = 0
 x = 0
2) y = - (x - 5) + 3
- (x - 5) + 3 = 0
 x = 8
ответ:     (0; 0) ; (8; 0)

2)  y = √x     y₀ = 2
y = y(x₀) + y`(x₀)*(x - x₀)  - уравнение касательной
если у₀ = 2, то
2 = √x
x₀ = 4 абсцисса точки
а) y(x₀) = y(4) = √4 = 2
б) y` = 1/2√x
y` = 1/2√4 = 1/(2*2) = 1/4
в)  y = 2 + (1/4)*(x - 4)
y = 2 + (1/4)*x - (1/4)*4
y = 2 + (1/4)*x - 1
y = (1/4)*x + 1 - уравнение касательной в точке
4,6(23 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ