Комбинаторика) Допустим, что Кай из Снежной королевы выкладывал слово вечность не из льдинок, а из букв в, е, ч, н, о, с, т, ь, каждая из которых написана на своей льдинке. Какое наибольшее число попыток расположения льдинок могло понадобиться Каю до того, как выложилось слово вечность?Желательно подробно)
Имеем ряд цифр 0, 2, 3, 4, 5.
Среди них чётны три цифры: 0, 2 и 4.
Начинаем расставлять цифры в четырёхзначном числе * * * *
1) Варианты расположения цифр без повторений:
"Закрепляем" ноль на месте единиц - единственный вариант.
На место десятков можно поставить любую из оставшихся четырёх цифр,
на место сотен - любую из оставшихся трёх,
на место тысяч - любую из оставшихся двух.
Получаем: 2*3*4*1=24 (числа с нулём на месте единиц)
Далее, "закрепляем" двойку на месте единиц,
на место десятков можно поставить любую из оставшихся четырёх цифр,
на место сотен - любую из оставшихся трёх,
на место тысяч - только одно число - ноль нельзя.
Получаем: 1*3*4*1=12 (чисел с двойкой на месте единиц)
Если "закрепить" четвёрку на месте единиц, получим результат, аналогичный предыдущему, т.е. 1*3*4*1=12 (см. рассуждения с двойкой)
Все полученные результаты складываем и даём ответ:
24+12+12=48 чётных чисел можно составить всего (без повторений цифр)
2) Варианты расположения цифр с повторениями:
Ноль на месте единиц: 4*5*5*1 =100 вариантов
Двойка на месте единиц: 4*5*5*1=100 вариантов
Четвёрка на месте единиц: 4*5*5*1=100 вариантов
Складываем результаты: 100+100+100=300 чётных чисел с повторениями цифр
Краткая запись решения:
1) Без повторений цифр: 2*3*4*1+1*3*4*1+1*3*4*1=24+12+12=48
2) С повторениями цифр: (4*5*5*1)*3=100*3=300