1.Это во вложении.
2.Углом наз. часть плоскости ограниченная двумя лучами, имеющими общее начало.
Сами лучи называются сторонами угла, а общая точка, из которой лучи выходят, наз. вершиной угла.
3.Угол равный двум прямым углам, т.е. 180 градусам. Посмотрите рис 1 во вложении – это развернутый угол.
4.Фигуры, которые совпадают при наложении называются РАВНЫМИ
5.Отрезок - наикратчайшее расстояние между двумя точками. Наложением, если совпадают – равны, если нет меньше тот, который полностью вмещается в другой отрезок. Можно просто измерить длины отрезков и сравнить их.
6.Середина отрезка - это точка, которая делит данный отрезок на два равных отрезка.
7.Нужно наложить один на другой, так что бы совместились вершины и стороны.
8.Проходящий через вершину угла, находящийся между сторонами и делящий его пополам.
9.Чтобы найти длину отрезка AB надо сложить длины отрезков AC и CB.
10.Линейка, рулетка, теодолит, лазерный дальномеррадиолокационный дальномер и т.д. и т.п.
11.Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Если разделить его лучами на 180 разных углов, то мы получим величину угла в 1 градус. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
12.Градусная мера угла равна сумме градусных мер его частей
13. Острый - градусная мера меньше 90 градусов, прямой угол – 90 градусов, тупой больше 90 градусов.
14.Смежными называются углы, имеющие общую вершину и общую сторону, а их вторая сторона – продолжение друг друга.
15.При пересечении двух прямых образуются две пары вертикальных углов. Вертикальные углы равны.
16. Прямые при пересечении которых образуется угол градусная мера которого равна 90 градусов
17. Два перпендикуляра к одной прямой между собой параллельны, а параллельные прямые не пересекаются.
18. Эккер, буссоль, теодолит (электронный тахеометр), рулетка. (В последнем случае используется теорема Пифагора).
Для нахождения площади фигуры, ограниченной линиями функций у = х^2, у = 0 и х = 2 построим сначала графики этих функций. График функции у = 0 - прямая, которая задаёт ось ОХ; график функции х = 2 - прямая, параллельная оси ОУ и пересекающая ось ОХ в точке х =2. График функции у = х^2 - парабола, построена поточечно путём подбора значений координаты х и вычислением значения функции у в каждой такой точке. То есть:
1) х = -4, у = (-4)^2 = 16, на графике откладываем точки х = -4 и у = 16;
2) х = -3, у = (-3)^2 = 9, на графике откладываем точки х = -3 и у = 9;
3)х = -2, у = (-2)^2 = 4, на графике откладываем точки х = -2 и у = 4;
4)х = -1, у = (-1)^2 = 1, на графике откладываем точки х = -1 и у = 1;
5)х = 0, у = 0, на графике откладываем точки х = 0 и у = 0;
6)х = 4, у = 4^2 = 16, на графике откладываем точки х = 4 и у = 16;
7) х = 3, у = 3^2 = 9, на графике откладываем точки х = 3 и у = 9;
8)х = 2, у = 2^2 = 4, на графике откладываем точки х = 2 и у = 4;
9)х = 1, у = 1^2 = 1, на графике откладываем точки х = 1 и у = 0.
Заштрихованная на графике область является фигурой, площадь которой необходимо вычислить (площадь криволинейной трапеции). Вычисляется она по формуле определенного интеграла S = ∫f(x) dx - g(x) dx (верхний предел b, нижний предел a). Найдём верхний и нижний пределы интеграла. Для этого воспользуемся построенным графиком. Определим, на каком промежутке функция у = х^2 находится выше оси ОХ (так как значение площади не может быть числом отрицательным). Это отрезок [0;2], значит верхним пределом интеграла будет два (b = 2), нижним ноль (а = 0).
Вычислим определенный интеграл функции у = х^2 с пределами 2 и 0, значение которого и будет равно значению площади:
S = ∫(х^2)dx (верхний предел 2, нижний 0).
Интегрируем с формулы интегрирования:
∫х^ n dx = x^(n+1) / n+1,
и получаем выражение х^3/3.
Далее воспользуемся формулой Ньютона - Лейбница и получим значение площади, равное 8/3 или ~ 2,67 кв.ед.
ответ: площадь фигуры, ограниченной линиями у = х^2, х = 2, у= 0 равна 8/3 или ~ 2,67 кв.единиц.
Подробнее - на -
Блин сорри была дома положил нету прости меня