ответ: x1=-7/2, x2=4
Объяснение:
|x²-1|+|x²-9|=x+18
Перенесем переменную в левую часть.
|x²-1|+|x²-9|-x=18
Рассмотрим все возможные случаи:
x²-1+x²-9-x=18, x²-1>=0, x²-9>=0.
-(x²-1)+x²-9-x=18, x²-1<0, x²-9>=0.
x²-1-(x²-9)-x=18, x²-1>=0, x²-9<0.
-(x²-1)-(x²-9)-x=18, x²-1<0, x²-9<0.
Решить все относительно х.
x=-7/2, (-∞,-1] [1,+∞); (-∞,-3] [3,+∞).
x=4
x=-26, (-1,1); (-∞,-3] [3,+∞).
x=-10, (-∞,-1] [1,+∞); (-3,3).
x∉R, (-1,1); (-3,3).
Найти пресечение
x=-7/2, (-∞,-3] [3,+∞).
x=4
x=-26, x∉∅
x=-10, (-3,-1] [1,+3).
x∉R, (-1,1).
Найти пресечение
x=-7/2
x=4
x∉∅
x∉∅
x∉R
ответ: x1=-7/2, x2=4
Найдем сначала уравнение секущей:
Она проходит через две точки:х1=-1, у1 = 2*(-1)^2 = 2
и х2 = 2, у2 = 2*2^2 = 8
Ищем уравнение секущей в виде: y=kx+b
Подставим сюда две наши точки и решим систему, найдем k:
-k+b=2
2k+b=8 Вычтем из второго первое: 3k = 6, k= 2.
Наша искомая касательная должна быть параллельна секущей, значит имее такой же угловой коэффициент. k=2
Найдем точку касания, приравняв производную нашей ф-ии двум:
Y' = 4x = 2
x = 1/2
Уравнение касательной к ф-ии в т.х0:
у = у(х0) + y'(x0)(x-x0)
Унас х0 = 1/2, у(1/2) = 2*(1/4) = 1/2, y'(1/2)= 2.
Тогда получим:
у = 1/2 + 2(х - 1/2)
у = 2х -0,5 - искомое уравнение касательной.
Объяснение:
|x²-1|+|x²-9|=x+18
Находим нули подмодульных выражений:
x²-1=0 (x+1)*(x-1)=0 x₁=-1 x₂=1.
x²-9=0 (x+3)*(x-3)=0 x₃=-3 x₄=3. ⇒
-∞-3-113+∞
1) x∈(-∞;-3)
x²-1+x²-9=x+18
2x^2-x-28=0
D=225 √D=15
x₁=-3,5 ∈ x₂=4∉.
2) x∈[-3;-1].
x²-1+(-(x²-9))=x+18
x²-1-x²+9=x+18
8=x+18
x=-10 ∉.
3) x∈(-1;1)
-(x^2-1)+(-(x^2-9))=x+18
-x²+1-x²+9=x+18
-2x²+10-x-18=0
2x²+x+8=0
D=-63 ⇒ Уравнение не имеет действительных корней.
4) x∈[1;3].
x²-1+(-(x²-9))=x-18
x-1-x^2+9=x+18
x=-10 ∉,
5) x∈(3;+∞)
x²-1+x²-9=x+18
2x²-10=x+18
2x^2-x-28=0
D=225 √D=15
x₁=-3,5 ∉ x₂=4 ∈.
ответ: x₁=-3,5 x₂=4.