Для решения задачи возьмем первоначальное количество яблонь на 1 участке за х. Если с 1 участка пересадить 1 яблоню на второй, то количество яблонь на первом выразим как (х – 1) яблонь. Тогда количество яблонь на 2 участке можно выразить как 3(х – 1). Известно, что всего на двух участках было 84 яблони. Составим и решим уравнение: (х – 1) + 3(х - 1) = 84 х – 1 + 3х – 3 = 84 4х = 84 + 3 + 1 = 88 х = 22 Значит 22 яблони было первоначально на первом участке. Найдем сколько было первоначально яблонь на втором участке: 84 – 22 = 62 Произведем проверку: Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони. 21 + 63 = 84 ответ: На втором участке изначально было 62 яблони.
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного которая должна выражать дату (в каком-то неизвестном представлении).
Обозначим второе число (дата), как тогда неизвестное число должно выглядеть, как: и должно выполняться равенство: или, иначе говоря: ;
Запишем это в столбик:
Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:
где: – возможная добавочная единица, уходящая из первого и приходящая во второй разряд:
– возможная добавочная единица, уходящая из второго и приходящая в третий разряд:
– возможная добавочная единица, уходящая из третьего разряда в четвёртый:
После сложения уравнений системы, получаем:
;
Это возможно, только если и при ;
Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.
Тогда получим 6 возможных вариантов разностного числа:
Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а поскольку так как с этой цифры начинается разностное число.
Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.
Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку .
Стало быть, дни месяца и месяц расположены в разрядах: .
Тогда остаётся три варианта разностного числа:
отсюда:
------------------
Рассмотрим первый вариант: здесь может играть роль апреля.
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
;
Возможны только случаи:
;
;
;
;
;
Учитывая, что:
получаем разностные числа:
– дата 12/04/56 г. – дата 15/04/86 г. – дата 21/04/47 г. – дата 24/04/77 г. – дата 24/04/38 г.
------------------
Рассмотрим второй вариант: здесь может играть только роль числа месяца (дня).
Сказано, что сумма всех цифр должна быть кратна трём, тогда:
7)a)5x²=45
x²=9
x±3
x1=3
x2=-3
b)4x²-x=0
x(4x-1)=0
x=0 ⇒ x1=0
4x-1=0 ⇒ x2=0.25
8)9x²-7x-2=0
D=49-4*9*(-2)=49+72=121=11²
x1===1
x2===-0.22
Объяснение: