Три числа утворюють арифметичну прогресію другий член якої дорівнює 6. Якщо від першого числа відняти 2, до третього додати 5,а друге залишити без змін, то отримаємо геометричну прогресію, знаменник якої дорівнює 2. Знайдіть ці числа
Первый корень подбираем как делитель свободного члена 81. Это могут быть числа При х=1 многочлен, стоящий в правой части равенства обращается в 0, поэтому х=1 - корень уравнения. Делим многочлен 4 степени на разность (х-1), должны получить многочлен 3 степени и в остатке 0. х^4-10x³+90x-81 | x-1 -(x^4-x³) | ---------------- ------------------ x³-9x²-9x+81 -9x³+90x-81 -(-9x³+9x²) ---------------------- -9x²+90x-81 -(9x²+9x) ------------------ 81x-8x 81x-81 ------------ 0 Можно записать разложение на множители многочлена 4 степени: x^4-10x³+90x-81=(x-1)(x³-9x²-9x+81) Теперь или опять подберём корень или разложим на множители многочлен 3 степени: x³-9x²-9x+81= x²·(x-9)-9·(x-9)=(x-9)(x²-9)=(x-9)(x-3)(x+3) Теперь запишем: x^4-10x³+90x-81=(x-1)(x-9)(x-3)(x+3)=0 x=1, x=9 , x=3 , x=-3.
Вначале проверяем, является ли x=1 - корнем уравнения. При подстановке убеждаемся, что является. Значит необходимо разделить исходный многочлен на многочлен (x-1), получается: (x - 1)(x^3 - 9x^2 + 26x - 24) = 0 Теперь необходимо найти корни x^3 - 9x^2 + 26x - 24 = 0 Опять проверяем на принадлежность к корню уравнения делители 24: +-1, +-2, +-3, и т.д. x = 2 - является корнем, делим многочлен на многочлен, получаем: (x - 1)(x - 2)(x^2 - 7x + 12) = 0 Остается найти корни квадратного уравнения: D=1 x=3, x=4 ответ: x=1, 2, 3, 4
перше число 18 друге 9 трете незнаю запитай у інших