Замечаем, что перестановки происходят отдельно среди четных чисел и среди нечетных чисел. Поэтому надо ответить на следующий вопрос: есть k предметов, расставленных в каком-то порядке слева-направо и соответствующим образом занумерованных; меняя местами за одну операцию два соседних предмета, нужно расставить их в том же порядке, но справа-налево. Говоря ученым языком, можно сказать, что сначала у нас не было ни одной инверсии (инверсия - это когда предмет с меньшим номером стоит правее предмета с большим номером), а надо сделать максимальное количество инверсий. Меняя местами соседей, мы каждый раз изменяем количество инверсий на 1. Конечно, нам невыгодно уменьшать количество инверсий, а выгодно - увеличивать. Но в каком порядке производить эту операцию - менять местами соседей - абсолютно непринципиально. Поступим, скажем, так. Поменяем сначала местами первый предмет и второй, затем первый и третий, первый и четвертый, и так далее, наконец, первый и последний. Всё. Первый предмет оказался на нужном месте и больше оттуда никуда сдвигаться не будет. Потребовалось нам для этого, естественно, (k-1) операция. Далее будем передвигать второй предмет до тех пор, пока он не поменяется местами с k-м предметом и не окажется рядом с первым, но левее первого. На это потребуется (k-2) операции. И так далее. Всего мы насчитаем операций.
Остается подвести итоги. Окончательный ответ зависит от того, каково n - четное оно или нечетное.
1-й случай: n - четное, n=2m. Это означает, что у нас m четных чисел и m нечетных чисел. Всего операций получится
2-й случай. n - нечетное, n=2m+1. Это означает, что у нас m четных чисел и (m+1) нечетных чисел.Всего операций получится
Решим задачу для n=5, 6, 7, 23.
n=5 - нечетное;
n=6 - четное;
n=7 - нечетное;
n=23 - нечетное;
а) (x - 3)⁴ - 5(x - 3)² + 4 = 0
t = (x - 3)²
t² - 5t + 4 = 0
t² - t - 4t + 4 = 0 (Теорема Виета)
t(t - 1) - 4(t - 1) = 0
(t - 1)(t - 4) = 0
t₁ = 1; t₂ = 4
(x - 3)² = 1 (x - 3)² = 4
x - 3 = ±1 x - 3 = ±2
x₁ = 4; x₂ = 2; x₃ = 5; x₄ = 1
б) (x² - 5x - 2)² + 4x² - 20x - 40 = 0
(x² - 5x - 2)² + 4x² - 20x - 8 - 32 = 0
(x² - 5x - 2)² + 4(x² - 5x - 2) - 32 = 0
t = x² - 5x - 2
t² + 4t - 32 = 0
t² - 4t + 8t - 32 = 0
t(t - 4) + 8(t - 4) = 0
(t - 4)(t + 8) = 0
t₁ = 4; t₂ = -8
x² - 5x - 2 = 4 x² - 5x - 2 = -8
x² - 5x - 2 - 4 = 0 x² - 5x - 2 + 8 = 0
x² - 5x - 6 = 0 x² - 5x + 6 = 0
x² + x - 6x - 6 = 0 x² - 2x - 3x + 6 = 0
x(x + 1) - 6(x + 1) = 0 x(x - 2) - 3(x - 2) = 0
(x + 1)(x - 6) = 0 (x - 2)(x - 3) = 0
x₁ = -1; x₂ = 6; x₃ = 2; x₄ = 3
г) (x - 4)(x + 2)(x + 8)(x + 14) = 1204
Понятия не имею как решать. прости
Объяснение:
5y(y+1)=1+y
5y²+5y=1+y
5y²+4y-1=0
Δ=16+20=36 ; √Δ=6
x1=(-4-6)/10=-12/10=-1,2 x2=(-4+6)/10=2/10=0,2