Вынесем икс за скобки: Произведение бращается в нуль, когда: Один корень найден: х = 0. Для второго уравнения попробуем подобрать целые корни, которые м.б. делителями свободного члена. Такой корень один: х = -1. Попробуем разложить на множители второе уравнение. Один множитель у нас есть - это (х + 1). Другой множитель получим, разделив многочлен (x³+x+2) на (х+1). В результате получится: (x²-x+2). Т.е. имеем дальнейшее разложение на множители: Уравнение x²-x+2=0 не имеет действительных корней. Действительно, дискриминант отрицательный.
В итоге у нас есть два действительных корня: x = 0 x = - 1
а=3,с=5 По т. Пифагора:с²=а²+в², в=√с²-а²=√5²-3²
Найти:в=? в=√25-9=√16=4
ответ:4
2) Дано:ΔАВС Решение:
а=5,с=13 По т. Пифагора: в²=с²-а², в=√169-25=√144=12
Найти: в=? в=12
ответ:12.
3) Дано:ΔАВС Решение:
а=0,5, с=1,3 По т. Пифагора: в=√с²-а²=√(1,3)²-(0,5)²=√1,69-0,25=
Найти: в=? = √1,44=1,2
ответ:1,2