Решить графически уравнение вида f(x)=g(x), значит построить графики двух функций у=f(x) и у=g(x) и найти точки пересечения этих графиков.
1) Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=9. Это прямая проходит через точку (0;9) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -3 и в точке, у которой первая координата по оси х равна 3. О т в е т. х=-3; х=3.
2) Аналогично
Построить параболу у=х² по точкам (-4;16) (-3;9) (-2;4) (-1;1) (0;0) (1;1) (2;4) (3;9) (4;16) и соединить эти точки точки плавной линией от первой до последней.
Построить прямую у=4. Это прямая, проходит через точку (0;4) и параллельна оси ох.
Два графика пересекутся в точке, у которой первая координата по оси х равна -2 и в точке, у которой первая координата по оси х равна 2. О т в е т. х=-2; х=2.
1 Действие: Найдем расстояние по течению и против течения. За х возьмем расстояние по течению, тогда( х - 32) расстояние по течению и получаем: х + ( х - 32) =88 Найдем х: х + ( х - 32) =88 2х=120 х=60км А тогда против он км 2 действие: получаем что за 2 часа против течения он проходит 28 км, а за 3 часа по течению 60 км, и следовательно находим скорость : Скорость против течения получается 14 км/ч, а скорость по течению 20 км/ч (Делим расстояние на время) обозначим скорость катера х, а скорость течения у.Составляем систему: х+у=20 (по течению) х-у=14 (против течения) получаем: 2х=34 х=17км/ч - скорость катера А тогда скорость скорость течения 20-х=у у=3 км/ч ответ: скорость катера 17 км/ч скорость течения 3 км/ч
0 = -2
Уравнение не имеет корней
2)2x-6=3x
2x - 3x = 6
-x = 6
x= -6
3)5x+6x = 11x
4)3x-5=-2x+7+5x-12
3x + 2x - 5x = -12 + 7 + 5
0 = 0
x - любое число
5)x-1+3x-5=(x-5)-(x-3)+(x+1)
4x - 6 = x- 5 - x + 3 + x + 1
4x - 6 = x - 1
4x - x = -1 + 6
3x = 5
x= 1 2/3