На координатной прямой отмечены числа : а , б и с Отметьте на этой прямой какое-нибудь число х , чтобы при этом выполнялись 3 условия: -а+х больше 0, -х+б меньше 0, х-с меньше 0
Сумма арифметической прогрессии считается по формуле где a1 - первый член прогресси; d - шаг или разность прогрессии; n - количество членов, которые надо просуммировать. (Кстати, это одна из формул для суммы первых n членов)
Первый член у нас задан, он равен a1= -9, количество первых членов n=5. Задан и шаг, только необычно. В арифметической прогрессии каждый член, кроме первого, отличается на одну и ту же величину (шаг). Нам задано, что (n+1)-й член меньше n-го члена на 16. Это означает, что шаг равен d = -16. С минусом, т.к. каждый последующий член меньше:
а) x€ (-∞;-4)U(2;+∞)
б) x€∅
Объяснение:
N°1:
Т. к. основание логарифма 2 > основание 1 => знак неравенства не меняется
D = b²-4ac = 4+32 = 36 = 6²
х1= 2; х2 = -4
(х-2)(х+4) > 0
х€ (-∞; -4)U(2;+∞)
ОДЗ: х²+2х > 0
х(х+2) > 0
Значит:
х€ (-∞; -2)U(0;+∞)
Получаем систему:
{x€ (-∞;-4)U(2;+∞)
{x € (-∞;-2)U(0;+∞)
Отсюда:
x€ (-∞;-4)U(2;+∞)
ответ: x€ (-∞;-4)U(2;+∞)
N°2:
Т. к основание логарифма 1/3 < основания 1 => знак неравенства меняется
2х+5 < х-4
х <-9
Значит:
х€ (-∞; -9)
ОДЗ:
{2х+5 > 0
{х-4 > 0
Получаем:
{х> -2,5
{х>4
Значит:
х€ (4;+∞)
Получаем систему:
{х€ (-∞;-9)
{х€ (4;+∞)
Отсюда: х€∅
ответ: х€∅