а) Всего все возможных исходов: C^4_{25}C254
Всего мальчиков 25-15=10. Три юноши и одна девушка могут выиграть 4 билета Всего благоприятных событий: C^3_{10}C^1_{15}=15C^3_{10}C103C151=15C103
Вероятность того, что среди обладателей билетов окажутся 3 юноши 1 девушка равна \dfrac{15C^3_{10}}{C^4_{15}}C15415C103
б) Билеты могут получить хотя бы 1 юноша, то есть это можно рассматривать как 1 юноша и 3 девушки или 2 юноша и 2 девушки или 3 юноша и 1 девушка или 4 юноша и 0 девушек. Всего вариантов получить 4 билета может выиграть хотя бы 1 юноша Вероятность того, что среди обладателей билетов окажутся хотя бы 1 юноша равна \dfrac{10C^3_{15}+C^2_{10}C^2_{15}+15C^3_{10}+C^4_{10}C^0_{15}}{C^4_{25}}C25410C153+C102C152+15C103+C104C150
Пусть х скорость яхты, тогда скорость по течению равно х+3 км/ч а против течения х-3 км/ч. t₁=S₁/v₁=9/х+3 время по течению, время против течения равно t₂=S₂/v₂=9/х-3. Из условия t₂-t₊=2ч
получаем следующее уравнение
54=2(x²-9)
2x²-18=54
2x²=72
x²=36
x=±√36=±6 скорость не может быть отрицательным значением ⇒ скорость яхты 6 км/ч
ответ:6 км/ч
P.S не всегда такие задачи решаются только дискриминантом, но да частенько выходят к уравнению 2-ой степени. Главное следуй логике и условию, а проверить можно, подставив ответ в уравнение. Если мое решение понравилось отметь лучшим
А - деталь небракованная В - деталь бракованная P ( В ) = 0,2 Р ( А ) = 1 - Р ( В ) = 1-0,2 = 0,8 Р = 0,8 * 0,8 * 0,2 = 0,128