Объяснение: 1) Задать формулой функцию, график которой проходит через точки А(1;1) и В(2;4). Решение : Уравнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: 1= k+b b и 4= 2k+b. Из первого уравнения b=1 - k, подставим во второе, получим 4= 2k+1-k ⇒k=3, b= 1-3=-2. Значит уравнение прямой у = 3х - 2.
2) Задать формулой функцию, график которой проходит через точки А(-12;-7) и В(15;2). Решение:равнение прямой y=kx+b, Подставим в него вместо х и у координаты точек А и В, получим 2 уравнения: -7 = -12k+b и 2 = 15k+b. Из второго уравнения b= 2-15k подставим в первое: -7 = -12k+2-15k ⇒ -9 = -27k ⇒k= 9/27=1/3 , тогда b= 2-15·1/3=2-5=-3. Уравнение прямой у= 1/3·х -3
№Задать формулой функцию, график которой проходит через точки А(-5;0) и В(12;-1). Решение аналогично: 0= -5k+b и -1 = 12k+b ⇒ k=1/17, b=5/17. Уравнение прямой у= 1/17·х +5/17
4)Задать формулой функцию, график которой проходит через точки А(0;3) и В(2;-1). Решение аналогично: 3= 0·k+b и -1= 2k+b ⇒b=3, k=(-1-b)/2=(-1-3)/2=-2 Уравнение прямой : у=-2х+3
Из исходного равенства видно, что p>q, в противном случае равенство не выполнялось бы. Предположим, что p=q+k, где k - натуральное. Тогда 2q+k=(q+k-q)^3, отсюда 2q+k=k^3 или 2q=k^3-k=k(k^2-1). Тогда q=k(k^2-1)/2. Отсюда сразу видно, что q будет простым только при k=2, поскольку при k=1 получаем 0, а при k>2 будем получать составные числа, а по условию q простое. Итак, при k=2, q=2*(2^2-1)/2=3. Тогда p=q+k=3+2=5. Это единственное решение удовлетворяющее данному равенству.
ответ: p=5, q=3.
Відповідь:
Пояснення:
Объяснение на фото: