М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
drachl
drachl
09.09.2022 20:57 •  Алгебра

Y= (x+2)/(x-3) исследовать функцию

👇
Ответ:
yanazaharova96
yanazaharova96
09.09.2022

1. Область определения: D(y)= X≠ 3 , X∈(-∞;3)∪(3;+∞). Не допускаем деления на 0 в знаменателе.

2.Поведение на бесконечности. Y(-∞)= -∞, Y(+∞)= -∞ - горизонтальная асимптота - y = 0.  

3. Разрыв II-го рода при Х = 3.

Вертикальных асимптота  - Х = 3.  

4. Нули функции, пересечение с осью ОХ.

x-3 = 2.   x = -2/3 .

5. Интервалы знакопостоянства.  

Отрицательна: Y(x)<0 - X∈(-∞;3). Положительна: Y>0 - X∈(3;+∞;)  

6. Проверка на чётность. Есть сдвиг по оси ОХ - нет симметрии ни осевой ни центральной.  

Функция ни чётная, ни нечётная: Y(-x) ≠ -Y(x) , Y(-x)≠ Y(x).  

7. Поиск экстремумов по первой производной.    

y'(x) = - 2/(x-3)² = 0. Корней - нет

8. Локальный максимум - нет.

9. Интервалы монотонности.  

Убывает: X∈(-∞;3)∪(3;+∞) - везде, где существует.  

10. Поиск перегибов по второй производной.  

y"(x) = 4/(x-3)³ = 0

Точки перегиба нет, кроме разрыва при Х = 0.    

11. Вогнутая - "ложка"- X∈(3;+∞;), выпуклая - "горка" - X∈(-∞;3);  12. Наклонная асимптота.  

k = lim(+∞) Y(х)/x = 2/(x²-3*х) = 0 - наклон.  y = 0 - горизонтальная асимптота.

13. Область значений. E(y) - y∈(-∞;+∞).  

14. График функции на рисунке в приложении.


Y= (x+2)/(x-3) исследовать функцию
4,5(82 оценок)
Открыть все ответы
Ответ:
KaiBennet
KaiBennet
09.09.2022

8

Объяснение:

Сложим два равенства, получим уравнение:

x^2 + y^2 = 4(x+y)

Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:

(x-2)^2 + (y-2)^2 = 8

Выражаем x через y:

(y-2)^2 = 8 - (x-2)^2 \\y = 2 + \sqrt{8 - (x-2)^2}

(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)

Наша целевая функция, в которой будем находить максимум, имеет вид:

x + 2 + \sqrt{8 - (x-2)^2} = S, где S - сумма решений системы уравнений.

Найдем производную по х, приравняем к нулю эту функцию

Получим

1 - \frac{x-2}{\sqrt{8-(x-2)^2 }} = 0 \\x - 2 = \sqrt{8 - (x-2)^2}\\2(x-2)^2 = 8\\(x-2)^2 = 4\\x_1 = 0;\\x_2 = 4

Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4

Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8

4,6(20 оценок)
Ответ:
vladdendi
vladdendi
09.09.2022

В обоих случаях рассматриваем прямоугольный треугольник с одним из углов \alpha .

В первом случае примем прилежащий к углу \alpha  катет за 3, а гипотенузу - за 5. Тогда неизвестный катет вычислим по т. Пифагора как \sqrt{5^2-3^2}=\sqrt{16}=4. Синус угла \alpha есть отношение противолежащего катета к гипотенузе, т.е. 4/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.

Во втором случае примем катет, лежащий против \alpha за 4, а гипотенузу - за 5. Неизвестный катет, по теореме Пифагора, будет равен 3. Косинусом \alpha есть отношение прилежащего катета к гипотенузе, т.е. 3/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.

4,8(76 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ