57 мест
Объяснение:
Пусть в первом ряду число мест равно a. И в каждом следующем ряду на x мест больше, чем в предыдущем.
Тогда во втором ряду a+x, в третьем ряду a+2x, в чевертом ряду a+3x, в пятом a+4x, ... в девятом a+8x, ... в последнем 21-ом ряду a+20x
(коэффициент, на который умножается x, на 1 меньше, чем номер ряда)
1) В условиях дано, что в пятом ряду 25 мест, то есть a+4x=25. Значит a=25-4x
2) В девятом ряду 33 места, значит a+8x=33
подставим в это уравнение выражение для a из пункта 1:
a+8x=33
(25-4x)+8x=33
25-4x+8x=33
25+4x=33
4x=33-25
4x=8
x=8/4=2
Подставим полученное значение x=2 в выражение из пунката 1:
a=25-4x=25-4*2=25-8=17
Тогда в последнем ряду a+20x = 17+20*2=17+40 = 57 мест
а)x<-1
x²+x=-3x-3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3
x2=-1не удов усл
2)-1≤x<0
-x²-x=3x+3
x²+4x+3=0
x1+x2=-4 U x1*x2=3
x1=-3 не удов усл
3)x≥0
x²+x=3x+3
x²-2x-3=0
x1+x2=2 U x1*x2=-3
x1=-1не удов усл
x2=3
b
1)x²+x-3=-x
x²+2x-3=0
x1+x2=-2 U x1*x2=-3
x1=-3 не удов усл
x2=1
2)x²+x-3=x
x²-3=0
х=-√3 не удов усл
х=√3
c
1)x<0
-x-x+2=4
-2x=2
x=-1
2)0≤x≤2
x-x+2=4
2=4
нет решения
3)x≥2
x+x-2=4
2x=6
x=3
2
|x²+2x|≥2-x²
1)x<-2
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈(-∞;-2)
2)-2≤x<0
-x²-2x≥2-x²
x≤-1
x∈[-2;-1]
3)x≥0
x²+2x≥2-x²
2x²+2x-2≥0
x²+x-1≥0
D=1+4=5
x1=(-1-√5)/2 и x2=(-1+√5)/2
x≤(-1-√5)/2 U x≥(-1+√5)/2
x∈[(-1+√5)/2 ;∞)
ответ x∈(-∞;-1] U [(-1+√5)/2 ;∞)