Повторные независимые испытания. Схема Бернулли. Число попаданий - случайная величина, принимающая значения от 0 до 5. Найдем вероятности появления этих значений.
Вероятность Значения 0. Число сочетаний из 5(выстрелов всего) по 0(рассматриваемое значение) - это 1 - умножим на 0.5 в степени 0 и на 1-0.5 в степени 5-0. Получаем 0.03125. Это 1/32.
Вероятность значения 1. Число сочетаний из 5 по 1 - это 5 - умножается на 0.5 в степени 1 и на 1-0.5 в степени 5-1. Получаем 0.15625. Это 5/32.
Вероятность значения 2. Число сочетаний из 5 по 2 - это 10 - умножаем на 0.5 в степени 2 ина 1-0.5 в степени 5-2. Получаем 0.3125. Это 10/32.
Далее вероятности располагаются в обратном порядке в силу симметричности числа сочетаний и того, что 1-0.5 равно 0.5.
Ряд распределения:
0 1 2 3 4 5
0,3125 0,15625 0,3125 0,3125 0,15625 0,03125
Проверка. Сумма всех вероятностей равна 1.
1 шоколадка - 25 руб.
Акция: 2+1
Сумма - 130 руб.
25*2=50 руб.- 2 шоколадки
По акции: 50 руб. - 3 шоколадки
130/50=2(ост.30) - 2 целых набора из 3-х шоколадок и 30 руб. останется
50*2=100 руб.; 3*2=6 - шоколадок можно купить на 100 руб.
30/25=1 (ост.5) - на 30 руб. можно купить 1 шоколадку за полную цену, и 5 руб. - сдача
6+1=7 шоколадок можно купить в воскресенье
Проверка: 50/3=16 2/3 руб. - шоколадка по акции
16 2/3 * 6 =50/3 * 6 = 300/3=100 руб. - 6 шоколадок по акции
130-100=30 руб. останется
30-25=5 руб. сдачи
7 шоколадок можно купить на 130 руб. в воскресенье - 6 по акции и 1 - полная цена