- квадратичная функция. График парабола => Сначала находим вершину. Пусть А(m;n) - вершина параболы => m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д. 1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0 2)При у=10 х=-2; при у=6 х=0; при у=0 х=3 3)у наиб=n (в вершине) =8 4) Возрастает (большему значению х соответствует большее значение у) на промежутке (-∞;1]; убывает (большему значению х соответствует меньшее значение у) на промежутке [1;+∞) 5)Аргумент - х. При у=0 х=-1 и 3=> y>0 при х∈(-1;3) y<0 при x∈(-∞;-1)U(3;+∞)
Область определения- это множество значений х, при которых данное выражение имеет смысл, т.е. существует. Надо исследовать вид нашего выражения и спросить себя : когда действия, которые есть в выражении не выполняются? 1) квадратный корень из отрицательного числа не существует 2) делить на нуль нельзя. 3) логарифм отрицательного числа и нуля не существует. Всё это учтём: (х - 5)( х - 4) ≥ 0 -∞ + 4 - 5 + +∞ lg(x - 2) ≠ 0 х - 2 ≠1 ⇒ х ≠ 3 x - 2 больше 0 х больше 2 Все эти выкладки покажем на одной координатной прямой и найдём общие промежутки. -∞ +2 3 4 - 5 + +∞
Смотри решение на фото