ответ 4
https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2B14%20%5Cgeq%204-x%20%5C%5C%20%5C%5C%20%5Cfrac%7B5x-1%7D%7B4%7D%20-%20%5Cfrac%7Bx-1%7D%7B2%7D%20%5Cgeq%203x-2%2C%20~%20%5CBig%20%7C%5Ctimes%204%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%203x%2Bx%20%5Cgeq%204-14%20%5C%5C%20%5C%5C%20(5x-1)%20-%202(x-1)%20%5Cgeq%204(3x-2)%20%5Cend%7Barray%7D%20%5Cright.%20%5C%5C%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cleft%20%5C%7B%20%5Cbegin%7Barray%7D%7Blcl%7D%204x%20%5Cgeq%20-10%20%5C%5C%20%5C%5C%205x-1%20-%202x%2B2%20%5Cgeq%2012x-8%20%5Cend%7Barray%7D%20%5Cright.
202
Объяснение:
y=x³-75x+20; [-7;0]
y'=3x²-75;
y'=0;
3x²-75=0; 3x²=75; x²=75/3=25; x=±√25=±5'
Абсциссы точек экстремума: x₁=-5: x₂=5.
x₂ не входит в исследуемый отрезок. Определяем характер экстремума в т. x₁=5.
Возьмем вторую производную ф-ии:
y''=(y')'=(3x²-75)'=6x
y''(5)=6*5=30>0 ф-ия в этой точке имеет минимум! Следовательно
В задаче не спрашивается о наименьшем значении ф-ии. Все, что в скобках{...} можно не писать:
{ Наименьшее значение ф-ии - в точке минимума:
y=x³-75x+20;
y(5)=5³-75*5+20=125-375+20=145-375=-230 }
Наибольшее значение ф-ии где-то по концам отрезка:
y=x³-75x+20;
y(-7)=(-7)³-75*(-7)+20=-343+525+20=202;
y(0)=0-0+20=20