2*4^x-3*10^x=5*25^xРазделим правую и левую части на 25^x. Получим 4^x 10^x2 - 3 = 5 25^x 25^x Так как степени у числетелей и знаменателей одинаковые можно поступить следующим образом 2* (4 : 25)^х - 3*(10 : 25)^х = 5Во второй дроби можно сократить 10 и 25 на 5. Получаем 2* (4 : 25)^х - 3*(2 : 5)^х = 5 Так как 4 = 2^2, a 25 = 5^2, получим следующее 2* (2 : 5)^2х - 3*(2 : 5)^х = 5 Введем новую переменную t = (2 : 5)^хПолучим новое уравнение2*t^2 - 3*t = 52*t^2 - 3*t - 5 = 0Решаем через дискриминант. a = 2, b = -3, c = -5D = b^2 -4ac = 9 - 4*2*(-5) = 9 + 40 = 49t(1) = (3 - 7) : 4 = -1t(2) = (3 + 7) : 4 = 2,5 x = -1 нам не подходит, так как ни при каких х (2 : 5)^х не будет отрицательным.Тогда получаем (2 : 5)^х = t(2) (2 : 5)^х = 5 : 2 (2 : 5)^х = (2 : 5)^(-1) х = -1 ответ: х = -1
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
1.
2.
3.