Линейное уравнение с двумя переменными имеет вид: ах + by + c = 0. Графиком данного уравнения, в общем виде, является прямая. Если только один коэффициент при переменной отличен от нуля, то графиком такого уравнения будет прямая, параллельная одной из осей координат. Если оба коэффициента при переменных равны 0, и с = 0, то графиком будет вся координатная плоскость. А если при данных условиях с ≠ 0, то графиком будет пустое множество. Если же оба коэффициента при переменных отличны от 0, то прямая может быть абсолютно любой.
ответ: прямая; прямая параллельная оси координат; координатная плоскость; ничего (пустое множество)
y=x^2-|4x+3| при х > -3/4 преобразуется к виду y=x^2-4x-3 = (х-2)^2-7 на участке от -3/4 до 2 график убывает от 0,5625 до -7 на участке от 2 до +беск график возрастает от -7 до + беск y=x^2-|4x+3| при х < -3/4 преобразуется к виду y=x^2+4x+3 = (х+2)^2-1 на участке от -беск до -2 график убывает от + беск до -1 на участке от -2 до -3/4 график возрастает от -1 до 0,5625 график несимметричный имеет 2 минимума и один максимум кривая у = м пересекает график y=x^2-|4x+3| ровно 3 раза только при м=-1 и при м=0,5625
Линейное уравнение с двумя переменными имеет вид: ах + by + c = 0. Графиком данного уравнения, в общем виде, является прямая. Если только один коэффициент при переменной отличен от нуля, то графиком такого уравнения будет прямая, параллельная одной из осей координат. Если оба коэффициента при переменных равны 0, и с = 0, то графиком будет вся координатная плоскость. А если при данных условиях с ≠ 0, то графиком будет пустое множество. Если же оба коэффициента при переменных отличны от 0, то прямая может быть абсолютно любой.
ответ: прямая; прямая параллельная оси координат; координатная плоскость; ничего (пустое множество)