М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
simeika98p0c45h
simeika98p0c45h
22.11.2022 21:16 •  Алгебра

Люди .я не освоил тему,как провести анализ функции.напишите алгоритм и как всё находить нужно.премного !

👇
Ответ:
LoKotRon2017
LoKotRon2017
22.11.2022
. Исследовать функцию с производной и построить ее график: y = x4 - 4x Для решения задачи используем схему исследования функции и алгоритм нахождения промежутков монотонности и экстремумов функции:   Схема исследования функции для построения графика.   1.     Найти область определения функции. 2.     Найти точки пересечения графика функции с осями координат (если это возможно). 3.     Исследовать функцию на чётность и нечётность. 4.     Найти интервалы монотонности и экстремумы функции. 5.     Отметить «сигнальные» точки в ПСК. 6.     Построить график функции.   Алгоритм нахождения промежутков монотонности и экстремумов функции.   1. Найти производную функции у’ . 2. Найти критические точки, решив уравнение у’ = 0. 3. Область определения функции разбить критическими точками на интервалы. 4. Определить знак производной в каждом интервале (методом проб). 5. Сделать вывод о монотонности функции на интервале: ·        если у’ > 0, то функция на интервале возрастает; ·        если у’ < 0, то функция на интервале убывает; ·        если у’ = 0, то необходимы дополнительные исследования. 6. Сделать вывод о существовании экстремумов: ·        если при переходе через критическую точку производная меняет знак с «+» на «-», то в этой точке функция имеет максимум; ·        если при переходе через критическую точку производная меняет знак с «-» на «+», то в этой точке функция имеет минимум; ·        если при переходе через критическую точку производная не меняет, то в этой точке функция не имеет экстремума. 7. Вычислить значения функции в точках экстремума. Решение. 1.     Функция y = x4 - 32x представляет собой многочлен, следовательно ее область определения – вся числовая прямая. D(y) = (-)/ 2.      Найдем точки пересечения графика с осями координат. ·        С осью OX: y=0  x4 - 4x = 0                                        x (x3 - 4) = 0 x1 = 0,  x 2 = 1,6      точки М1 (0;0),  М2 (1,6; 0) ·        С осью OY: x = 0 . Точка М1 (0;0). 3.     Функция ни четная, ни нечетная (переменная х имеет и четную и нечетную степень в выражении функции), т.е. функция общего вида. Следовательно, график функции не имеет симметрии относительно осей координат и начала системы координат. 4.     Найдем интервалы монотонности и экстремумы функции.      y' = 4x3 – 4,  y’ = 0 4x3 – 4= 0 x = 1– критическая точка.           -           1         +                                                             min              Определим знак производной в каждом интервале:          y’(0) = -4 <0 функция убывает в интервале (-; 1)          y’(2) = 28 >0 функция возрастает в интервале (1; ).                   Вычислим значение функции в точке экстремума:          y(1) = 13 – 4*1 = -3 M3(1;-3) – min. 5.     Отметим найденные точки и построим график функции.
4,5(45 оценок)
Открыть все ответы
Ответ:
SkeetNZ
SkeetNZ
22.11.2022
Например, 154 = 11*14
Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9.
Или 847 = 11*77
8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9.
Нашел простым подбором, это было нетрудно.
А вот найти все решения через решение уравнений - трудно.
Если число 100a + 10b + c, то должна выполняться одна из систем:
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 6
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 6
4,4(69 оценок)
Ответ:
def04565
def04565
22.11.2022
Например, 154 = 11*14
Сумма квадратов 1 + 25 + 16 = 42 - делится на 3, но не делится на 9.
Или 847 = 11*77
8^2 + 4^2 + 7^2 = 64 + 16 + 49 = 129 - делится на 3, но не делится на 9.
Нашел простым подбором, это было нетрудно.
А вот найти все решения через решение уравнений - трудно.
Если число 100a + 10b + c, то должна выполняться одна из систем:
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = b
{ a^2 + b^2 + c^2 = 9k + 6
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 3
ИЛИ
{ a + c = 11 + b
{ a^2 + b^2 + c^2 = 9k + 6
4,6(98 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ