а) a1 = 30, a2 = 24, d = 24 — 30 = -6
Формула n-ого члена: a(n) = 36 — 6n
b) Найдем количество положительных чисел в этой прогрессии
{ a(n) = 36 — 6n > 0
{ a(n+1) = 36 — 6(n+1) < 0
Раскрываем скобки
{ a(n) = 36 — 6n >= 0
{ a(n+1) = 36 — 6n — 6 = 30 — 6n < 0
Переносим n направо и делим неравенства на 6
{ 6 >= n
{ 5 < n
Очевидно, n = 5
a(5) = 36 — 6*5 = 6
a(6) = 36 — 6*6 = 0
c) Определим количество чисел, если их сумма равна -150.
S = (2a1 + d*(n-1))*n/2 = -150
(2*30 — 6*(n-1))*n = -150*2 = -300
(66 — 6n)*n = -300 = -6*50
Сокращаем на 6
(11 — n)*n = -50
n^2 — 11n — 50 = 0
(n — 25)(n + 2) = 0
Так как n > 0, то n = 25
Примем вершину пирамиды в начале координат.
Тогда тогда боковые рёбра равны x, y, z.
Выразим площади боковых граней:
xz = 8,
yz = 16,
xy = 18.
Решим эту систему: z = 8/x. y*(8/x) = 16, отсюда у = 2х. Подставим в 3 уравнение: х * 2х = 18, 2х² = 18 или х = +-√9 = +-3.
Отрицательное значение не принимаем, примем х = 3, тогда у =2*3 = 6, z = 8/3.
Найдём стороны основания по Пифагору.
a = √(3² + 6²) = √(9 +36) = √45 = 3√5.
b = √(3² + (8/3)²) = √(6 +(64/9)) = √(100/9) = 10/3.
c =√(6² + (8/3)²) = √(36 +(64/9)) = √(388/9) = √388/3 ≈ 6,566.
Найдём площадь одной из граней.
So = (1/2)xy = (1/2)*3*6 = 9/
ответ: V = (1/3)SoH = (1/3)*9*(8/3) = 8 куб.ед.
.
0
Объяснение:
смотрите прикрепленное изображение