Можно, например, использовать непрерывность функции f(x) = (x−a)(x−b)+(x−a)(x−c)+(x−b)(x−c) и исследовать её поведение.
а) при x→±∞: y→±∞ б) в силу симметрии функции относительно параметров a, b, c без ограничения общности можно считать, что a≤b≤c f(x=a) = (a−b)(a−c) f(x=b) = (b−a)(b−c) f(x=c) = (c−a)(c−b) б1) пусть сначала все числа a, b, c различны: a<b<c f(x=a) > 0 f(x=b) < 0 f(x=c) > 0
Значит, f(x) меняет знак трижды и, следовательно, имеет как минимум три корня: на интервалах (−∞,a), (a,b), (b,c).
б2) если хотя бы два числа из тройки (a,b,c) совпадают, то хотя бы одно из чисел a, b, c будет корнем уравнения f(x)=0.
Нужно само решение!
1. Розв'яжіть нерівність sinx >0 :
Відповідь: (2πn; π+2πn), n∊Z
2. cosx >-1/2
Відповідь: (-2π/3+2πn;2π/3+2πn), n∊Z
3. tgx<√3
Відповідь: (-π/2 +πn; π/3+πn)
4. sin2(x) < 1/2 (застосуйте формулу пониження степеня)
Відповідь: (-π/4+πn;π/4+πn), n∊Z
5. 2 sin(x/2 - π/4) ≥ -1
Відповідь: [π/6 + 4πn;17π/6 + 4πn], n∊Z
6. 4sin(x/2)cos(x/2)≤ -1
Відповідь: [-5π/6+2πn;-π/6+2πn], n∊Z
7. sin3xcosx-cos3xsinx ≤ 1/2 (застосуйте формули додавання для тригонометричних функцій)
Відповідь: [-7π/12 + πn;π/12 + πn], n∊Z