1)
2)
Каждая сторона вписанного треугольника соединяет середины сторон исходного и поэтому является средней линией. Средняя линия треугольника равна половине длины стороны, которой она параллельна.
Коэффициент k подобия этих треугольников ½
.Отсюда каждая сторона первого вписанного треугольника равна 8·½ =4 см
.Пусть периметр исходного треугольника будет Р₁,
периметр первого вписанного треугольника- р₂
Тогда Р₁=8·24 см
р₂=24·½ =12 cм
Отношение периметров подобных треугольников равно коэффициенту их подобия.
р₃=12·½=6 см
р₄=6·½=3 см
р₅=3·½=1,5 см
р₆=1,5·½=0,75 см
р₇=0,75·½=0,375 см
р₈=0,375·½=0,1875 см
Как Вы, наверное, обратили внимание, последовательность периметров сторон вписанных треугольников - геометрическая прогрессия, где каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же число ½.
Каждый член геометрической прогрессии {bn} определяется формулой
bn = b₁ · qⁿ⁻¹
b₈=24·(½)⁷=0,1875 см
№1
Сокращается дроби
5x/7y • 14y/15x = ⅔
№2
(a²-ab)/(b²+ab) : (3a-3b)/6(a+b) =
= a(a-b)/b(b+a) : 3(a-b)/6(a+b) => Переворачивается дробь и умножаем их.
=> a(a-b)/b(b+a) • 6(a+b)/3(a-b)
#Сокрашаем дроби.
=> 6a/3b = 2a/b