Пусть, для определённости, d>=c>=b>=a. Тогда всю дробь можно переписать в виде:

Что и требовалось доказать.
Пояснение: Выражение после первого знака неравенства получается, если взять наименьший знаменатель, а это d+d+d=3d.
Выражение после второго знака неравенства получается оттого, что мы берём наибольший числитель(то есть b+c+a=a+a+a=3a).
Выражение после третьего знака неравенства справедливо так как a>=d, то есть a/d>=1. Отсюда 3*(a/d)>=1*3=3
P.S. Если что-то непонятно, то не стесняйся спрашивать)
и 
Объяснение:
Первый модуль обращается в ноль при x=-2, второй - при
.
Пусть сначала

Тогда уравнение принимает вид
и, очевидно, не имеет решений.
Пусть теперь


Если
, то оба модуля раскрываются с плюсом и уравнение принимает вид:

Полученный x будет корнем уравнения, если он принадлежит рассматриваемому отрезку, то есть если
удовлетворяет системе неравенств

Решение системы: 
Если
, то уравнение принимает вид

Полученный x будет корнем уравнения, если
удовлетворяет системе:

Решение системы: 
Пусть, наконец,
. Тогда уравнение принимает вид

Полученный x будет корнем уравнения, если
удовлетворяет системе:

Эта система не имеет решений.
Теперь пусть
, то есть
.
Если
, то

Система:

Нет решений.
Если
, то

Система:

Решение системы: 
И наконец, если
, то

Система:

Решение: 
Из вышесказанного очевидно, что
При
- два решения
При
- одно решение
При
- нет решений
При
- нет решений
При
- одно решение
При
- два решения
Таким образом, уравнение имеет одно решение при
и 
17>8 и 10>8
17+10=27
8+8=16
27>16