среднее арифметическое набора чисел равно 205.Чему будет равно среднее набора,если все числа набора: а)увеличить в 10 раз б)уменьшить на 5 в)сначала увеличить в 2 раза, а затем уменьшить на 10
(1 1 1) (1 1 2) (1 1 3) (1 1 4) (1 1 5) (1 1 6) (1 2 1) (1 2 2) (1 2 3) (1 2 4) (1 2 5) (1 2 6) 1 2 1 1 3 2 1 3 3 1 3 4 1 3 5 1 3 6 1 4 1 1 4 2 1 4 3 1 4 4 1 4 5 1 4 6 1 5 1 1 5 2 1 5 3 1 5 4 1 5 5 1 5 6 1 6 1 1 6 2 1 6 3 1 6 4 1 6 5 1 6 6 Цифры означают, например, в первой скобке (1 1 1) при бросании выпали цифры 1 на первом кубике 1 на втором 1 на третьем Выше показано 36 вариантов но это только для случая когда на первом кубике будет 1 Так как на кубиках 6 цифр то всего вариантов будет 36*6=216 Сумма очков равная 3 будет только в первом варианте 1+1+1=3 Таким образом вероятность исхода будет равна 1/216 =(приблиз)=0,005
Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
а)205×10=2050
б)200-5=200
в)205×2=400