D(y)=R a<0 Ветки параболы в низ Нули функции -x^2+2x+8=0 D=36 корень из D=6 X1=(-2+6)/-2=-2 точка (-2;0) X2=(-2-6)/-2=4 точка(4;0) Координаты вершин параболы M=-b/2a=-2/-2=1 N=-D/4a=-36/-4=9 точка (1;9) Дальше просто отметь точки и дорисуй параболу f возрастает на промежутке( - бесконечность;1) бесконечность поставь символом :) f понижается на промежутке (1;+бесконечность) Нули (-2;0),(4;0) Функция отрицательна при ( - бесконечность;-2) U (4;+бесконечность)
А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
a<0 Ветки параболы в низ
Нули функции
-x^2+2x+8=0 D=36 корень из D=6 X1=(-2+6)/-2=-2 точка (-2;0)
X2=(-2-6)/-2=4 точка(4;0)
Координаты вершин параболы
M=-b/2a=-2/-2=1 N=-D/4a=-36/-4=9 точка (1;9)
Дальше просто отметь точки и дорисуй параболу
f возрастает на промежутке( - бесконечность;1) бесконечность поставь символом :)
f понижается на промежутке (1;+бесконечность)
Нули (-2;0),(4;0)
Функция отрицательна при ( - бесконечность;-2) U (4;+бесконечность)