Для начала давайте вспомним, какие функции четные, какие нечетные, а какие ни четные, ни нечетные.
Если f(-x) = -f(x), то функция нечетная.
Если f(-x) = f(x), то функция четная.
Если же вышеперечисленные критерии не соблюдаются, то функция ни четная ни нечетная (функция общего вида).
Что же, тогда приступим.
____________________
Найдем F(-x):
F(-x) = - x³ + 4ctgx
F(-x) = - (x³ - 4ctgx)
Т.е, выполняется условие нечетной функции. f(-x) = -f(x) НЕЧЕТНАЯ
____________________
Найдем F(-x):
Не соблюдается ни одно из наших критериев. Следовательно наша функция НИ ЧЕТНАЯ НИ НЕЧЕТНАЯ.
ответ:
объяснение:
здесь область допустимых значений состоит только из двух
под первым корнем квадратный трехчлен --парабола, ветви вверх:
2x²-8x+6 ≥ 0
x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)
решение: х ∈ (-∞; 1] u [3; +∞)
под вторым корнем квадратный трехчлен --парабола, ветви вниз:
-x²+4x-3 ≥ 0
x²-4x+3 ≤ 0 корни те же))
решение: х ∈ [1; 3]
пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}
легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть < 1-1 (меньше нуля)
остается х = 3: √0 + √0 < 3-1 это верно))
ответ: х=3