Пусть - канонический базис в
.
Тогда матрицу перехода можно найти следующим образом:
Если записать блочную матрицу и привести путем элементарных преобразований к виду
, то
Матрицу легко получить: достаточно записать в столбцы координаты векторов базиса
. Аналогично с матрицей
.
В итоге необходимо получить вид следующей матрицы:
Вычтем первую строку из второй и третьей:
Вычтем из первой строки 2 третьих и поменяем их местами:
Вычтем из третьей строки вторую:
Прибавим ко второй строке 2 третьих и вычтем из первой третью:
Делим вторую строку на 3:
Прибавляем в первой строке 2 вторых:
Итак, для решения примера надо каждое число представить в степени какого-то числа, желательно чтобы было число одно и то же. Объясняю, к примеру, надо представить число 512 как какое-то число в какой-то степени. 512 это у нас 2 в степени 9 (
). Итак, сейчас наша задача представить каждое число как число 2 в какой-то степени. По порядку: 512=
, 128=
, 256=
, 64=
, 4=
, 16=
, 8=
. С этим мы справились, а сейчас нужно каждое число умножить на их степени, в которых они стоят. Сейчас покажу, как это всё выглядит на данном этапе:
Далее всё просто. Чтобы возвести число, стоящее в степени, в степень, то нужно показатели степеней перемножить:
Ну а дальше простая математика 2 класса: при умножении чисел с одинаковыми основаниями, но с разными степенями, их степени складываются; при делении - степени вычитаются. Подсчитаем результат в числителе:
В знаменателе:
И последнее действие:
ответ: 2^{-33}