Скорость мото обозначим m км/ч, а скорость вела v км/ч. Расстояние АВ они в сумме проехали за 15 мин = 1/4 часа. m/4 + v/4 = AB Мото потратил на дорогу АВ на 40 мин = 2/3 часа меньше, чем вел. AB/m + 2/3 = AB/v Получили систему { AB = (m+v)/4 { AB/v - AB/m = 2/3 Подставляем (m+v)/(4v) - (m+v)/(4m) = 2/3 3m(m+v) - 3v(m+v) = 2*4mv 3m^2 + 3mv - 3mv - 3v^2 = 8mv 3m^2 - 8mv - 3v^2 = 0 (3m+v)(m-3v) = 0 Скорости m и v - обе положительные, поэтому 3m+v > 0 Значит, m = 3v - скорость мото в 3 раза больше скорости вела. Подставляем в 1 уравнение AB = (v+3v)/4 = 4v/4 = v Значит, велосипедист проехал расстояние АВ ровно за 1 час.
Любое нечётное число можно записать в виде 2n-1, где n∈z (множество целых чисел). у нас три последовательных нечётных числа. каждое последующее нечётное число на 2 больше предыдущего (например, 1, 3, 5, 7 и так далее). обозначим минимальное из наших чисел 2n-1. тогда следующее будет 2n-1+2=2n+1, а последнее 2n+1+2=2n+3. эти числа в порядке возрастания расположатся, очевидно: 2n-1; 2n+1; 2n+3. по условию : (2n+1)(2n+-1)(2n+1)=76 (2n+1)(2n+3-(2n-=0 (2n+1)(2n+3-2n+1)-76=0 (2n+1)4-76=0 8n+4-76=0 8n-72=0 n=72/8 n=9 тогда искомые числа будут: 2n-1=2*9-1=18-1=17 2n+1=2*9+1=18+1=19 2n+3=2*9+3=18+3=21