Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
а) у'=12х² б) у'=24х в) у'=12 г) у'= 8х д) у'=36х²