1) х³ + х² - 6 * х = 0
х * (х² + х - 6) = 0
х₁ = 0 х₂ = 2 х₃ = -3
2) (x² - 2x + 3)(x² - 2x + 4) = 6
пусть х² - 2*х + 3 = т. уравнение принимает вид
т * (т + 1) = 6
т² + т - 6 = 0
т₁ = -3 т₂ = 2
1) х² - 2 * х + 3 = 2
х² - 2 * х + 1 = (х - 1)² = 0
х = 1
2) х² - 2 * х + 3 = -3
х²- 2 * х + 6 = 0
корней нет (дискриминант отрицательный)
3) 6*x² + 11*x - 2 = 0 6*x - 1
уравнение 6*x² + 11*x - 2 = 0 имеет 2 корня: х₁ = -2 х₂ = 1/6
второй корень не подходит, так как в этом случае знаменатель равен нулю
Вот то, что нам известно:
xyx - число
2x+y=13
yxx=xyx+360
Делаем методом подбора. Так как цифра единиц и сотен совпадает, то их сумма должна делиться на 2 без остатка:
13=0+13
13=2+11
13=4+9
13=6+7
13=8+5
13=10+3
13=12+1
Нолик убираем, так как число трёхзначное (он был лишь для того, чтобы указать все числа, которые делятся на 2). Числа 13 и 11 выбывают тоже, так как на месте десятков должна быть лишь одна цифра.
Теперь пробуем составить числа из оставшегося:
13=4+9; число - 292
13=6+7; число - 373
13=8+5; число - 454
13=10+3; число - 535
13=12+1; число - 616
Теперь пытаемся применить эти числа ко второму условию (yxx=xyx+360):
1. 922=292+630
2. 733=373+360 (подходит)
3. 544=454+90
355 и 166 меньше своих изначальных значений, тут сложение даже не пройдёт :))
ответ: это число 373.
КАК ТО ТАК