В решении.
Объяснение:
Сначала нужно раскрыть скобки, потом привести подобные члены, потом перенести неизвестное влево, известное вправо и вычислить неизвестную величину.
1) (3y-1)-(2y+4)+y=33
3у-1-2у-4+у = 33
2у = 33+5
2у=38
у=38/2
y= 19;
2) 15x=(6x-1)-(x+18)
15х = 6х-1-х-18
15х-5х = -19
10х = -19
х= -19/10
х= -1,9;
3) 17p-8-(p+7)+15p=0
17p-8-p-7+15p=0
31p = 15
p=15/31;
4) (6m-4)-(7m+7)-m=1
6m-4-7m-7-m = 1
-2m = 1+11
-2m = 12
m= 12/-2
m= -6.
Проверка путём подстановки вычисленных значений х, у, p и m в уравнения показала, что данные решения удовлетворяют данным уравнениям.
2) {x+y=5
{x^3 +y^3=35
1.Из 1-го уравнения выразим х через у: х=5-у
2. Подставим во 2-е уравнение полученное выражение:
(5-у)^3+y^3 = 35
125 - 75y+15y^2-y^3+y^3=35
15y^2-75y+90=0
y^2-5y+6=0
Подберём корни по теореме обратной теореме Виета
у1=2, у2=3
3. Найдём х1 и х2
х1= 5-2=3 х2=5-3=2
(3;2) и (2;3)
3) {3x=y+1
{7^y-2x+2=7^y-4x+1+6
1. Выразим из 1-го у через х: у=3х-1
2. Подставим во 2-е предварительно упростив его
7^y-2x+2=7^y-4x+1+6,
7^y-2x-7^y+4x=-2+1+6
2х=5
х=2,5
3. Найдём у: у=3х-1=3*2,5-1=7,5-1=6,5
ответ. (2,5;6,5)
x(4-x)(4+x)=0
x=0 x= +(-)4
2) 6x^2(x+2)(x-2)=0
6x^2=0
x=0 x= +(-) 2
3) x^2(x+1)- 4(x+1)=0
(x+1)(x^2-4)=0
(x+1)(x-2)(x+2)=0
x= 1 x= +(-) 2