24 (км/час) собственная скорость яхты.
Объяснение:
Расстояние между пристанями A и B равно 143 км. Из A в B по течению реки отправился плот, а через 3 часа вслед за ним отправилась яхта, которая, прибыв в пункт B,тотчас повернула обратно и возвратилась в A. К этому времени плот км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. ответ дайте в км/ч.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - собственная скорость яхты.
х+2 - скорость яхты по течению.
х-2 - скорость яхты против течения.
143/(х+2) - время яхты по течению.
143/(х-2) - время яхты против течения.
Яхта была в пути (30:2)-3=12 (часов), уравнение:
143/(х+2)+143/(х-2)=12
Общий знаменатель (х+2)(х-2), надписываем над числителями дополнительные множители, избавляемся от дроби:
143*(х-2)+143*(х+2)=12*(х+2)(х-2)
143х-286+143х+286=12х²-48
-12х²+286х+48=0/-1
12х²-286х-48=0, квадратное уравнение, ищем корни:
D=b²-4ac = 81796+2304=84100 √D= 290
х₁=(-b-√D)/2a
х₁=(286-290)/24
х₁= -4/24 -1/6, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(286+290)/24
х₂=576/24
х₂=24 (км/час) собственная скорость яхты.
Проверка:
143/26 + 143/22=5,5+6,5=12 (часов), верно.
Пусть в квадратном уравнении значение a (возле x^2) = 1, тогда b (возле x) = -2 * (a - 1), а c = -2a + 1. Согласно теореме Виетта:
x(1) * x(2) = c/a
x(1) + x(2) = -b/a
Если один из корней уравнения положительный, а другой - отрицательный, то значение c/a отрицательное, так как при умножении положительных чисел на отрицательные произведение также отрицательное (меньше, чем 0). Тогда:
c/a < 0
(-2a+1)/1 < 0
-2a + 1 < 0
-2a < 0 - 1
-2a < -1
a > -1 : (-2)
a > 0,5
ответ: квадратное уравнение будет иметь положительный и отрицательный корни при a > 0,5
Подробнее - на -
Объяснение:
2х+168=26х
-24х=-168
24х=168
х=7