1) любые 2) любые 5) x ∈ (-∞;-6) ∪ (-6;6) ∪ (6;+∞) 6) любые 9) x ∈ (-∞;-5) ∪ (-5;+∞) 10) с ∈ (-∞;-4) ∪ (-4;3) ∪ (3;+∞)
Объяснение:
Дробь имеет смысл, если знаменатель не равен нулю.
Значит задача состоит в том, что мы должны найти значения икса, при которых знаменатель обращается в нуль.
1) знаменатель = 1 -> имеет смысл всегда
2) знаменатель = 7 -> имеет смысл всегда
5) x^2 - 36 = 0
x^2 = 36
x = +6 ; -6;
при x = +6 и x = -6 выражение не имеет смысл.
6) x^6 + 1 = 0
x^6 = -1
степень 6 кратна двум, это значит, что любое число (даже отрицательное) в итоге будет ≥ 0.
Например (-1)^2 = 1.
9) x^2 + 10x + 25 = 0
формула дискриминанта: D = b^2 - 4ac.
D = 10^2 - 4*1*25 = 100 - 100 = 0
D = 0 => x = (-b)/2 = -10/2 = -5
При x = -5 выражение не имеет смысла.
10) выражение, очевидно, не имеет смысла при c - 3 =0 и с + 4 = 0
с = 3 и с = -4.
сначала применим к правой части формулу приведения:
cos 2x = -cos x
cos 2x + cos x = 0
2cos²x - 1 + cos x = 0
Пусть cos x = t, причём |t| ≤ 1
2t² + t - 1 = 0
D = 1 + 8 = 9
t1 = (-1 - 3) / 4 = -1
t2 = (-1 + 3) / 4 = 1/2
cos x = -1 или cos x = 1/2
x = π + 2πn,n∈Z x = ±arccos 1/2 + 2πk,k∈Z
x = ±π/3 + 2πk,k∈Z
Данные решения могут совпадать, что разумеется нам не надо, поскольку тогда придётся писать что-то одно. В данном случае не совпадают, и это хорошо видно по числовой окружности, нанеся на неё точки π/3 и π видно, что решения никогда не наложатся одно на другое.
Поэтому, произведём отбор корней по обоим формулам.
Отберём корни из первого решения. Для этого впихнём данное решение в указанный промежуток и решим двойное неравенство относительно n:
3π/2 ≤ π + 2πn ≤ 5π/2
π/2 ≤ 2πn ≤ 3π/2
Разделим на 2п:
1/4 ≤n≤ 3/4
Видим, что никаких целых n нет на данном интервале. Значит, данное решение мы отбрасываем.
Осталось второе решение.
Также вобьём его в указанный промежуток и решим полученное двойное неравенство относительно k, но разобъём данное объединённое решение ещё на два и провернём с каждым подобную операцию:
3π/2 ≤ π/3 + 2πk ≤ 5π/2
7π/6 ≤ 2πk ≤ 13π/6
Разделим данное неравенство на 2π:
7/12 ≤ k ≤ 13/12
Замечаем, что на данном промежутке единственное целое значение k - это k = 1. Подставив его в общую формулу вместо k, получим тот самый корень, который нам требуется:
k = 1 x = π/3 + 2π = 7π/3 - это нужный отобранный корень
Теперь проверим. есть ли ещё такие корни.
Для этого впихнём в данный промежуток второй вариант решения ±π/3 + 2πk, это -π/3 + 2πk:
3π/2 ≤ -π/3 + 2πk ≤ 5π/2
11π/6 ≤ 2πk ≤ 17π/6
11/12 ≤ k ≤ 17/12
По неравенству видно, что есть опять же только единственное значение k - это 1. Подставив его в эту формулу получим наш второй корень:
k = 1 x = -π/3 + 2π = 5π/3
Таким образом, ответ пишем таким образом:
а)π + 2πn,n∈Z; ±π/3 + 2πk,k∈Z
б)7π/3; 5π/3
Под буквой б - наши отобранные корни на заданном промежутке. Задача выполнена.
Пошаговое объяснение дано в приложении