Объяснение: Пусть Х м-ширина прямоугольника, У м-ширина, тогда
ХУ м²-площадь исходного прямоугольника, (х+2) м-ширина нового прямоугольника, (у - 2) м-длина нового прямоугольника, (х+2)(у-2) м²- площадь нового прямоугольника. Составим и решим систему уравнений: у-х=5 и (у-2)(х+2) - ху =7. Выразив из первого равнения
у через х, получим у=5+х.Подставив значение у во второе уравнение, получим (5+х-2)(х+2) - х(5+х) =7. После упрощения имеем 6=7, что неверно. Исходного прямоугольника с такими сторонами не существует. Надеюсь, что условие верное.
Примем вершину пирамиды в начале координат.
Тогда тогда боковые рёбра равны x, y, z.
Выразим площади боковых граней:
xz = 8,
yz = 16,
xy = 18.
Решим эту систему: z = 8/x. y*(8/x) = 16, отсюда у = 2х. Подставим в 3 уравнение: х * 2х = 18, 2х² = 18 или х = +-√9 = +-3.
Отрицательное значение не принимаем, примем х = 3, тогда у =2*3 = 6, z = 8/3.
Найдём стороны основания по Пифагору.
a = √(3² + 6²) = √(9 +36) = √45 = 3√5.
b = √(3² + (8/3)²) = √(6 +(64/9)) = √(100/9) = 10/3.
c =√(6² + (8/3)²) = √(36 +(64/9)) = √(388/9) = √388/3 ≈ 6,566.
Найдём площадь одной из граней.
So = (1/2)xy = (1/2)*3*6 = 9/
ответ: V = (1/3)SoH = (1/3)*9*(8/3) = 8 куб.ед.
.
ответ: 25³ - 1 = 25*25*25-1
Объяснение:
Если хотя бы один из множителей делится на 24 все выражение делится на 24.