Центральный угол правильного многоугольника - это угол между двумя лучами, проведенными из центра многоугольника к двум его соседним вершинам. Центр правильного многоугольника совпадает с центром описанной окружности, значит, центральный угол, образованный двумя радиусами, проведенными к двум соседним вершинам, равен центральному углу многоугольника.
У правильного n-угольника n равных сторон, значит, будет n равных центральных углов.
Для двенадцатиугольника
360° : 12 = 30°
Внешний угол правильного многоугольника равен центральному углу.
у=2х+4 или 2х+7
Объяснение:
у=кх+б
коэффициент б при х=0 определяет точку пересечения с у. коэффициент к определяет угол наклона прямой по отношению к оси х и у.